
 
 
 

 International Journal of Bioelectromagnetism www.ijbem.org 
 Vol. 9, No. 4, pp. 249 - 252, 2007  

  
 
 

Frequency Domain Identification of Interacting 
Systems in the Brain 

Laura Marzettia, Cosimo Del Grattaab, Gian Luca Romaniab, Guido Noltec 
 a Department of Clinical Sciences and Bioimaging, Gabriele D’Annunzio University, Italy  

b Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University Foundation, Italy 
c Fraunhofer FIRST.IDA, Berlin, Germany 

Correspondence: L Marzetti, Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University Foundation, 
Via dei Vestini 31, 66013 Chieti, Italy. E-mail: l.marzetti@unich.it, phone +3908713556944, fax +3908713556930 

 

Abstract. In order to understand interference among brain areas, it is fundamental to separate true 
source interaction from noise and to identify independent subsystems composed of interacting sources. 
Here, a frequency domain approach is proposed which, first, separates true source interaction from 
noise by considering only the imaginary part of the data cross-spectra; then, decomposes the 
interaction phenomenon into uncorrelated subsystems by applying the source Principal Component 
Analysis (sPCA) that exploits the assumption of spatial orthogonality of sources rather than signals. 
Finally, the contribution of correlated sources within each subsystem is disentangled by means of the 
Minimum Overlap Component Analysis (MOCA) by using a pure spatial criterion to unmix pairs of 
correlates sources.  
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1. Introduction 
In understanding and modeling brain functioning, it is not only important to be able to identify 

active areas but also to understand interference among different areas. To this end, it is fundamental to 
separate true interaction from noise and to unmix the contribution of different subsystems composed of 
interacting sources. To isolate true interactions we focus on the imaginary part of the data cross-spectra 
that reflects true non zero-lagged interactions in the brain [Nolte et al., 2004; Marzetti et al., 2007]. In 
order to separate the contribution of various subsystems, a PCA/sPCA decomposition of the imaginary 
part of the cross-spectra is applied which necessarily results in complex eigenvectors. The respective 
real and imaginary parts span the two-dimensional subspaces in a signal-space that is identical to the 
subspace spanned by pairs of interacting sources. In order to split the contribution of these two 
interacting sources, a purely spatial criterion: Minimum Overlap Component Analysis (MOCA), is 
employed. MOCA also localizes the respective sources related to each eigenvector with a weighted 
minimum norm method combining geometry and amplitude information to avoid bias towards 
superficial sources. The approach is here tested in simulations. 

2. Material and Methods 
A straightforward way to study interaction between sources is to decompose imaginary parts of 

cross-spectra into eigenvectors and then interpreting these eigenvectors. For the sPCA decomposition, 
we assume that the sources are temporarily uncorrelated and spatially orthogonal in source space rather 
than in signal space as in PCA where, for a given spatial pattern in signal space, a source is estimated 
with a convenient linear inverse method. The real and imaginary parts of the eigenvectors are a linear 
combination of the fields of the sources in the brain. When solving the inverse problem, for these 
eigenvectors a mixture of the sources is localized. To demix the source contributions the MOCA 
method was developed. Here, one first solves the inverse problem for the real and imaginary parts by a 
weighted minimum norm solution. Then, it is assumed that the sources are orthogonal to each other, 
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which, however, does not allow for a unique decomposition. As an additional criterion, we assume that 
the two source distributions have a minimum overlap defined for as a fourth order measure for vector 
fields, namely   
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 being two orthogonal (in source space) and normalized source distributions 

defined on voxels at locations x .   
 
This approach was tested in Monte Carlo simulations consisting of 5000 runs in the presence of 2 

or more dipoles as uncorrelated sources. Spatially correlated, uncorrelated or realistic noise has been 
added in order to evaluate the robustness of the sPCA approach. Similarly, for pairs of correlated 
sources, noise free Monte Carlo simulations have been carried out in order to assess the robustness of 
the MOCA method. 

3. Results 
In Fig.1 we show an example of sPCA decomposition as opposed to classical PCA for one pair of 

uncorrelated dipoles. The patterns extracted by applying sPCA to the global field pattern are almost 
identical to the true field patterns. In contrast, classical PCA identifies two patterns, which are clearly a 
mixture of the fields of the single dipoles as a result of the wrong assumption of orthogonality in the 
signal space made by PCA. 

In Fig.2 left, we show the error distribution between true fields and resolved dipole fields by means 
of PCA and sPCA for 2, 3 and 4 uncorrelated dipoles in the noise free case as well as in the presence 
of noise. The distributions show that, when no noise is added to the simulated data,  sPCA is far 
superior to PCA in disentangling the field patterns generated by uncorrelated dipoles regardless of their 
number. The median values of the error distributions for sPCA are at least 15 times smaller than the 
corresponding median value for PCA. Similar results were obtained also when spatially correlated 
noise is added to the signals. This type of noise is typically the case for spontaneous brain activity not 
related to the neural activity under study [Sekihara and Scholz, 1996]. In this case, the sPCA model is 
able to account for this kind of noise, which is correctly disentangled from the true fields. In contrast, 
classical PCA slightly degrades its performances with respect to the noise free case. Furthermore, if the 
noise model is constituted by realistic noise, the sPCA model is also able to explain such noise in terms 
of a field pattern orthogonal to the true fields, thereby succeeding in recovering the original field 
patterns. In the presence of uncorrelated noise among all channels, we do not observe a strong 
advantage of sPCA over PCA because brain sources can hardly explain uncorrelated channel noise. In 
principle, it is possible to consider regularized inverse operators. However, uncorrelated channel noise 
is an unrealistic event that would mean that internal noise in the electronics of the measurement 
equipment is dominating the signal. Nevertheless, in this limiting case, sPCA performances become 
comparable to the PCA performances. 
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Figure 1. Left: simulated dipole positions and orientations. Right:true dipole  field, patterns resulting from PCA 

decomposition of the global field , patterns resulting from sPCA decomposition of the global field. The source 
space orthogonality assumption results in a sPCA decomposition which is almost identical to the true field 
patterns. 

For the separation of coherent or correlated sources (Fig.2 right), the error distribution shows that 
neither PCA nor sPCA achieve a good separation whereas MOCA does. For almost all of the simulated 
pairs of dipoles, in fact, MOCA strongly succeeds in the decomposition. Although the MOCA method 
does not make any assumption on the dynamical properties of the sources, it also succeeds in 
separating the contribution of uncorrelated sources with results as good as sPCA. This result is 
surprising as sPCA makes a dynamical assumption (in place of a stronger spatial one) that is exactly 
fulfilled. In any case, both sPCA and MOCA are clearly far superior in comparison to PCA. 

 

 
 
Figure 2. Left: PCA and sPCA error distributions between the true fields and the disentangled ones for various 

number of uncorrelated dipoles. Right: PCA, sPCA and MOCA error distributions between the true fields 
and the disentangled ones for 2 uncorrelated or correlated dipoles.   

4. Discussion and Conclusions 
We propose a method for identifying systems composed by interacting sources in the brain and 

disentangling the contribution of the various sources within each system. As a prerequisite, we 
developed the sPCA method for the decomposition of temporally uncorrelated or non-interacting 
sources or systems. This method is more effective than classical PCA in separating the contribution of 
various brain sources to a measured field, due to the assumption of spatial orthogonality of the sources 
rather than fields, as assumed by classical PCA. A second method, MOCA, is designed for the study of 
correlated source pairs and aims at disentangling the contribution of each source within a system by 
exploiting a purely spatial criterion. Nevertheless, although MOCA does not make any explicit 
dynamical assumption, for uncorrelated sources it performs as well as sPCA and far better than PCA. 
The MOCA approach provides also a weighted minimum norm localization of the decomposed source 
patterns, which is able to estimate focal as well as extended and distributed sources in contrast to 
methods that assume dipolar sources. 

We believe this approach can help improving understanding brain interference phenomena by 
revealing networks composed of systems of sources interacting at a specific frequency or in a given 
frequency band. Therefore, we expect this method to be particularly effective in identifying 
interference among brain regions involved in the generation and keeping of human brain rhythms such 
as alpha rhythm for resting state activity or mu rhythm for somato-motor activity. We also believe that 
in all cases of pathologies in which an alteration of the power or frequency of such rhythms has been 
observed (e.g Alzheimer disease), the method could contribute to the investigation of a possible 
alteration of the interaction mechanism as well. 
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