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Abstract. In this paper we assess the connectivity among brain areas engaged in a real and an imagined 
finger tapping task from Electroencephalogram (EEG) measurements using linear and non-linear 
measures of synchronization. In the linear approach, connectivity is inferred using the measures of 
Coherence and Partial Coherence. Non-linear measures of connectivity are further employed using 
phase dynamics. Information encoded in the phase dynamics is quantified using measures of phase 
synchronization. Instantaneous phases of each single trial are calculated using time-frequency methods 
best fitted for non-stationary signals. Local phase extraction is performed using wavelet transform and 
a newly developed signal analysis technique based on the Hilbert-Huang transform. The inferred 
patterns of connectivity highlight similarities in the structural and functional organization of cortical 
networks involved in actual and imagined motor movement. The consistency of results produced by 
the various measures of functional connectivity employed here provides further evidence that 
synchronization analysis can be used for the detection of movement intention in EEG-based brain 
computer interface applications. 

Keywords: EEG, Phase Synchronization, brain connectivity, Wavelet transform, Hilbert-Huang 
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1. Introduction 
The detection of movement intention from brain signals is the primary task of Brain Computer 

Interface (BCI) applications. Successful operation of BCI systems allows restoring the communication 
between a disabled person and his environment, or controlling neuroprosthetic devices. Within this 
framework, the identification of similar patterns of activation between an actual motor task and its 
imagination can help detection of movement intention. Apart from movement related frequency 
modulations quantified using the ERD/ERS methodology [Pfurtscheler and da Silva, 1999; 
Pfurtscheller et al., 2006], the information encoded in the phases of brain signals has recently received 
attention in BCI research [Gysels and Celka 2004, Brunner et al., 2006, Stavrinou et al., 2007]. In our 
previous work we investigated whether connectivity patterns evaluated by synchronization measures 
can be used as extra features for the detection of movement intention. Until now, several methods have 
been implemented for assessing the connectivity between brain areas, that were based a) on the 
amplitude modulation of the recorded electrophysiological signals (Electrocorticography, or 
Electroencephalography, EEG), b) on the frequency content and, lately, c) based on the phase 
information contained in the signals.  

A number of approaches developed within different theoretical frameworks have been used in the 
study of brain functional and effective connectivity from electrophysiological data [Quiroga et al., 
2002]. According to Friston [Friston et al., 1993], functional connectivity is operationally defined as 
temporal correlations (dependencies) among spatially remote electrophysiological events while 
effective connectivity deals with the causal influence of one system over the other. Using the 
information in the frequency domain, the functional interactions between neural regions have been 
largely investigated using coherence and partial coherence analysis of multivariate neural signals 
[Baccala and Sameshima, 2001]. Moreover, the direction of information flow, thus effective 
connectivity has been investigated using linear methods like Partial Directed Coherence (PDC) 
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[Baccala and Sameshima 2001] and Directed Transfer Function (DTF) [Kaminski et al., 2001; Babiloni 
et al., 2005].  

Lately, in the study of both functional and effective connectivity, nonlinear methods have been 
introduced (e.g., based on the concept of generalized synchronization [Schiff et al., 1996] or phase 
synchronization [Varela et al., 2001]. The dynamical interaction of brain electrical activity can be 
better characterized by non-linear interdependencies [Breakspear and Terry, 2002]. Nonlinear 
measures of interdependence using information theoretic concepts like entropy and mutual information 
have been used in the literature. Moreover, methods of nonlinear dynamical systems theory (e.g., 
nonlinear synchronization measures) have been used to evaluate dynamical interdependences in 
multichannel EEG data [Lachaux et al., 1999; Quian Quiroga et al., 2002; David et al., 2004]. The 
evaluation of phase synchronization is based on the calculation of instantaneous phases. Widespread 
approaches used for this procedure are either based on Hilbert transform [Tass et al., 1998], or the 
signal convolution with a complex wavelet [Lachaux et al., 2000]. Both methods were compared and 
found fundamentally equivalent for the study of neuroelectric signals [Quiroga et al., 2002]. 

In the present work we evaluated the functional connectivity among the brain areas dominantly 
engaged in the actual and imagination of the motor task. The aim of the present study is to compare 
and contrast linear and nonlinear synchronization measures for inferring neuronal connectivity sub-
serving real and imaginery finger tapping from EEG data.  

2. Materials and Methods 
 
Four healthy volunteers participated in this study (2 males) with mean age 27.5 years, range 22-34 

years. Subjects were strongly right-handed according to the Edinburgh Inventory [Oldfield 1971]. The 
protocol and experimental procedures were approved by the local ethics committee and were in 
compliance with the declaration of Helsinki. The experiments have been conducted in the EEG 
Laboratory of Neurophysiology Unit, Department of Physiology, Medical School, University of Patras, 
Greece.  

Subjects sat on a comfortable armchair in an electrically isolated room, dimly illuminated. A small 
led light was adjusted on the wall in front of the subjects, in order to fixate their sight on it, so as to 
avoid excess of ocular movements. The experimental session consisted of four parts. In the first part, a 
median nerve stimulation of subject’s right wrist was conducted, above the motor threshold where a 
definite twitch of the thumb was visible. The ISI of the electric stimulation was 1500 ms and stimulus 
duration 200 microseconds. For the second part the subject was instructed to make a right index finger 
tapping task, tapping a key of a keyboard, externally paced by an auditory signal (1000 Hz, dB max 64 
arranged to be heard but not annoying to the subject, 50microseconds duration, and ISI 1500 ms). The 
next session consisted of a sub-session were the subjects practiced right index finger tapping for 250 
trials before the right index finger imagery task begun. Subjects were instructed to imagine the right 
index finger tapping task with the auditory stimulation giving the pace. Subjects were instructed to 
imagine the kinesthetic of the movement and not the visual image of the movement itself. After 
training, approximately 130 trials of right index finger imagery were recorded. A control session 
consisted of an auditory stimulation, were the subject was instructed to hear passively the auditory 
stimulation without executing any movement, while being relaxed. 

EEG signals were recorded with a sampling frequency of 1000 Hz from 60-electrodes mounted on 
an elastic cap (Electrocap International, Ohio, USA), and acquired with a SynAmps amplifier 
(Neuroscan, USA). The Neuroscan software was used for recording. Linked earlobes were used as a 
reference and AFZ electrode as ground. Impedances were kept bellow 5 KΩ. The signals were filtered 
between 0.1 and 200 Hz. The positions of all the electrodes as well as of four anatomical landmarks 
(nasion, inion and the two preauricular points) and points on the face and head were digitized with a 
3D Digitizer (Pohlemus 3Dspace Fastrack, Colchester Vt, USA). 

The datasets were visually checked for noisy epochs which were excluded from further analysis. 
Approximately 100 artifact-free trials were selected for each session and each subject for the actual 
finger tapping task and the imagery task. Each epoch consisted of a time window of 300 ms pre- and 
1200 ms post- stimulus, while a -100 to -80 ms time interval was used for baseline correction. A 
cluster of ten electrodes above the sensorimotor cortex was selected for further analysis: FC3, FC1, 
FCZ, C5, C3, C1, CZ, CP3, CP1, CPZ, for the left (contralateral) hemisphere and for the right 
hemisphere FCZ, FC2, FC4, CZ, C2, C4, C6, CPZ, CP2, CP4. The datasets were preprocessed with a 
discrete Laplacian before continuing with the synchronization methods. The analysis is further focused 
on beta band (15-30 Hz) activity.  
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2.1. Reference dependency and reference – free data 
In multi-channel EEG recordings, the choice of the reference electrodes plays an important role 

especially when coherence or phase synchronization index is computed. Some authors suggested that, 
the use of a common reference electrode confounds the recorded signals, as the activity at this 
electrode contributes to both signals involved in the coherence analysis, therefore it can influence the 
value of the coherence obtained. To follow that, it is assumed that signals should be reference-
independent prior to their analysis for the coherence or phase content. Moreover, volume conduction 
affects the coherence and connectivity measures. For all these reasons, we calculated the discrete 
Laplacian-transformed time series before starting their analysis.  

2.2.  The Multivariate Autoregressive Approach 
These measures of connectivity are based on the output of feeding the data to an autoregressive 

model and calculating the absolute Coherence and partial Coherence [Rosenberg et al, 1998, Schlogl 
and Supp, 2006]. 

We briefly describe the analysis steps involved in calculation of coherence and partial coherence 
within the multivariate autoregressive (MVAR) modeling framework. For a stationary time series, of D 
simultaneously measured signals (adjusted to have mean zero) , a MVAR model of orderD

ts ℜ∈ p , can 
is described by: 

,
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A very important step is the calculation of the coefficients model order. The above estimation 
procedure can be carried out for any model order m. In the literature of multivariate linear models 
different criteria for model order estimation have been proposed e.g.: Final Prediction Error - FPE 
criterium [Akaike, 1969], Information Theoretic Criterion – AIC [Akaike, 1974], Autoregressive 
Transfer Function Criterium - CAT [Parzen, 1977].  

Based on the experience gained by using these three criteria we have adopted the use of the AIC 
criterion. The correct m is determined by minimizing the Akaike Information Criterion (AIC) defined 
as 

mpVNkAIC e
22)]ˆlog[det()( +⋅=  

where N is the number of experimental data points of the sampled signal,  is the estimated 
covariance matrix of the noise processes.  can be determined from the formula:  
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where ,  are the estimated matrix of coefficients and matrix of covariances.  iÂ )(ˆ iR

2.2.1. Coherence Measures 
Coherence analysis has been widely applied to multichannel EEG data as a tool for studying linear 

coupling between signals. Mathematically, coherence is analogous to a cross-correlation coefficient in 
the frequency domain and gives a measure of the synchrony between two signals at a particular 
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frequency. Coherence measures take into consideration both amplitude and phase variations in order to 
calculate the interrelations between signals. High coherence values reflect the phase consistency 
between scalp areas, and it has been often interpreted as evidence for anatomical connections, 
functional coupling, information exchange, functional coordination or “temporal coordination” [Gray 
and Singer, 1989, Pfurtscheller and Andrew, 1999] between the cortical structures underlying these 
areas.  

After fitting the MVAR model, we calculated the coherence (Coh) and the partial coherence 
(pCOh) at an interval of ±2 Hz around the individual peak frequency of the beta band identified from 
the wavelet time-frequency maps. The denoted coherence is the absolute value of the coherence 
derived from the multivariate power spectral density  between two channels i and j:  )( fSij
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Partial Coherence (pCoh) is used to determine whether the relationship between two processes i 
and j is the consequence of a common input or whether there is an additional association between i and 
j [Rosenberg et al., 1998]. If this common influence existing between signals i and j, might be 
originating from a third generator k that drives them, the partial coherence will calculate the interaction 
between i and j that is not shared with k [Pereda et al., 2005]. In this way, the pCoh has a smaller value 
than the Coh, but is a better estimator in what regards the removal of the volume conduction effects. 
The pCoh between the channels i  and j  at a given frequency is defined as: f
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In other words, the partial coherence estimates the amount of additional improvement in predicting j 
from i. The limits for partial coherence are also between 0 and 1; 0 indicating that the linear time 
invariant relationship between channels i and j is entirely accounted for by their individual 
dependencies on another channel k, and 1 indicating that i perfectly predicts j, and neither can be 
perfectly predicted from k. However we must notice here, that pCoh is based on the assumption of 
linearity, that is, it removes linear interdependencies between signals. A possible non-linear interaction 
between signals is not depicted by this method. However, it is known that electrophysiological 
processes are non-linear processes, thus there is the need for nonlinear multivariate methods for the 
connectivity analysis. 

2.3. The Phase Dynamics Approach 
Quantification of the interrelation between phases of signals has started to become a very important 
tool in the analysis of neurophysiological data. Developed within the framework of weakly coupled 
nonlinear oscillator systems [Rosenblum et al., 1996; Pikovsky et al., 2001], the phase synchronization 
analysis can detect a weak form of nonlinear interaction between oscillator systems, which may be not 
revealed by cross-correlation or coherence. This owns to the fact that standard coherence measures 
cannot disentangle the contributions of phase and amplitude, and clearly discard the linear contribution 
of a third signal from the calculations. There are many cases in neuroscience research in which the 
signals can be strongly coherent, but with no actual synchronization of oscillatory processes present. 
Therefore, there is the need of a more strict measure that measures inherent characteristics of 
oscillators. For this purpose, it has been proposed the use of the non-linear phase synchronization 
measure to characterize the phase coupling between two given signals [Tass et al., 1998, Varela et al 
2001]. 
This approach has been used recently to characterize connectivity and enhance low-resolution 
electromagnetic tomography, to characterize synaptic connectivity subserving plasticity [Palmero-Soler 
et al., 2007, Tass and Hauptmann, 2007] and its usage is becoming increasingly popular. In a previous 
work [Cimponeriu et al, 2003] it has been demonstrated the performance of phase synchronization 
analysis in identifying connectivity patterns between brain areas engaged in a paced finger tapping task. 
Here, we employed it to the analysis of functional connectivity in actual and imagined finger tapping 
by quantifying the inter-channel phase synchronization in the beta frequency range. 
The first step of the phase synchronization analysis is the computation of phase from the recorded 
brain data. For this purpose, we made use of two time-frequency based methods for estimation of the 
local phase of a signal. The first one is based on the wavelet transform, whereas the second one uses 
the Hilbert-Huang transform. The two methods are described below. 
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Wavelet transform- based phase synchronization analysis 
As a first approach, we used wavelet phase synchronization, taking the wavelet coefficients 

corresponding to the most reactive frequency in the beta range. After extraction of phases, the degree 
of synchronization between any two of the selected electrodes i and j, is evaluated, on a single trial 
basis, using a phase synchronization index (PSI) . The wavelet used is a complex Morlet wavelet 

, where  is the frequency resolution and is the time 

resolution respectively. 

ijPSI
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22
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= πσ tA  is a normalization factor (communication with Ole Jensen) is a 
normalization factor which ensures that the wavelet has unit energy [Tallon-Baudry et al., 1997]. We 
choose the complex Morlet wavelet as it yields a complex wavelet transform, containing information 
on both the amplitude and phase. The square magnitude of the convolution of the signal (each single 
trial) and the wavelet function, gives an estimation of the power (or energy) for each frequency 
analyzed: 2

00 )(*),(),( tsftuftE = . This value is calculated for each single trial and each frequency and 

it is then averaged to produce the time – frequency plots.  

Hilbert-Huang transform based phase synchronization analysis 
As introduced by Huang and colleagues [Huang et al., 1998], the empirical mode decomposition 

(EMD) technique is capable of adaptively decomposing signals into oscillating intrinsic components. 
The EMD is an adaptive decomposition technique with which any complex signal can be decomposed 
into a definite number of high frequency and low frequency components by means of a process called 
sifting. These components are called intrinsic mode functions (IMF). These IMFs have well defined 
instantaneous attributes and are defined as functions that (1) have the same number of zero-crossings 
and extrema; and (2) the mean value of the upper and the lower envelopes is equal to zero. EMD offers 
an alternative, adaptive method of identifying intrinsic oscillations within data, providing a new 
method of identifying connection between neural assemblies [Sweeney-Reed and Nasuto, 2007]. The 
phase synchrony analysis is performed on the component corresponding to the beta range activity (IMF 
number 4). The original time history x(t) is finally expressed as the sum of the IMF components plus 
the final residue: 
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where r(t) is the residue of the decomposition. The phase of each imfi(t) has been obtained using the 
Hilbert transform: 
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The phase synchronization analysis of the dominant intrinsic modes can provide a useful indicator of 
the degree of interaction between coupled dynamical systems. 

Phase synchronization quantification 
Phase synchronization is encountered in weakly interacting oscillator system and it manifests by 

the occurrence of a relationship between the corresponding phases variables. The degree of 
synchronization between two EEG signals can be measured by a statistic on the distribution of their 
phase difference called the index of synchronization (PSI) [Pikovsky et al., 2001]:  
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where )( pj tφ and )( pi tφ  are the instantaneous phases of any two channels single trials or corresponding 

dominant EMD components, and  is the total duration of the trial or the segment used for the 

calculation of the . Here, we used a segment of 800 ms, starting from the 200 ms post-stimulus. 

takes values in the range from 0 (no phase synchronization) to 1 (perfect synchronization). 

Furthermore, values are averaged over all single trials selected for analysis.  
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3. Results and Discussion 
In this work, we compare the results of the above mentioned methodologies for the purpose of 

Brain Computer Interface applications. We studied the connectivity in the hemisphere contralateral to 
the hand moves, within a cluster of electrodes above the sensorimotor area.  

 

 
Figure 1. The output for the linear multivariate approach contains results of Coherence (Coh) (left column) for a 
representative subject, and the results of partial Coherence (pCoh) for the same dataset.. The upper plots show the 
connectivity patterns for the real and the bottom ones for the imagination of the movement. The results of 
coherence (Coh) analysis highlight the important role played by the FCZ channel. Partial coherence (pCoh) 
reveals a cross-talk between FCZ, C5, CP3 and Cz. 
 

 
Previous results have shown that on the same group of electrodes on the ipsilateral hemisphere, 

similar connectivity patterns but without a prominent couple of interrelating electrodes. Moreover, a 
lack in bilateral coherence between post movement central mu and beta oscillations in the human 
electroencephalogram has been reported in the literature [Andrew and Pfurtscheller, 1997; van 
Leeuwen et al., 1978]. Here, we extracted connectivity patterns from the linear coherence measures 
and the non-linear phase synchronization measures. As we can see from Figure 1 the Coh results are 
different from the pCoh ones showing different degree of synchronization between the selected 
channels.  
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Figure 2. The output for the phase dynamics approach after the wavelet transform (left column) for the same 
dataset as in Fig.1, and the results of EMD approach for the same dataset as well. The upper plots depics the 
connectivity patterns for the real and the bottom plots for the imaginary of the movement. A prominent 
interrelation between C5 and FCZ is seen. The same pattern holds and for the EMD –based synchronization 
analysis.  

 
However, the pCoh measure is more close to the results obtained with the phase approach, as can 

be seen from comparison of Figures 1 and 2. It is stated by other authors that to interpret coherence as 
cortical coupling could be misleading, because volume conduction and activity at the reference 
electrodes can result in erroneous high coherence values [Andrew and Pfurtscheller, 1997]. In this 
perspective, it is explained why pCoh provides more consistent results, as it expected to remove 
contribution from a third, common generator. However, these contributions could be extracted using 
the pCoh approach, only if they are linear [Pereda et al, 2005]. 

It is widely accepted that coherence cannot disentangle the contributions of amplitude and phase in 
the interrelations between the measured signals. In addition, the role of phase synchronization in the 
genesis of oscillations between cortical areas is becoming more prominent [Womelsdorf T et al., 2007]. 
The phase dynamics accounts for the non-linear interactions between the coupled oscillators. In 
addition, the phase synchronization should explain both local and distant binding, not only perceptual, 
but also the overall integration of all dimensions of a cognitive act [Lachaux et al., 1999]. 
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Synchronized beta oscillations were found to bind multiple sensorimotor areas into a large scale 
network during a repeated motor task [Bovelli et al., 2004]. Thus, synchronization in the beta band 
might subserve binding of information processing regarding the preparation, intention and execution of 
a motor task, in the same way as gamma band is thought to be the binding mechanism for higher 
cognitive tasks [Lachaux et al, 1999]. 

We used first the instantaneous phase of the EEG signals obtained by the complex wavelet 
decomposition to quantify the inter-channel synchronization and evaluate the patterns coupling in the 
beta frequency range. Wavelets have been successfully and traditionally implemented for phase 
extraction from many authors in the past [Varela et al, 2001, Lachaux et al, 1999]. Our results show 
consistent high interrelation between the electrodes FCZ and C5 for this measure (see Figure 2, left 
column). This prominent connectivity between those two channels was preserved in imagery. A medial 
to lateral connectivity pattern underlying movement planning and execution has been reported in the 
literature [Michelon et al., 2006, Lotze et al, 1999].  

In addition, we tested the results in synchronization of the newly developed method of Hilbert 
Huang transform. This technique adaptively decomposes a given data series, here the EEG datasets, 
into a number of elementary orthogonal modes with well defined instantaneous attributes (IMFs). 
These Imfs might be more accurate to represent the intrinsic oscillatory processes [Huang et al, 1998]. 
The instantaneous phase has been extracted by applying the Hilbert transform on the dominant 
oscillatory components identified by EMD. A possible advantage of such a transform over traditional 
time-frequency transforms, is that the nonlinearity of the signal may lead to leakage of energy into high 
frequency and hence results in spurious synchrony, which is avoided with EMD.  
For the purpose of our analysis we checked the frequency content of the 4th Imf used. The peak 
frequency for this Imf was inside the beta band. The results found with this method are similar with 
those of the wavelet transform as can be seen in Figure 2. The same lateral and medial network was 
revealed with the leading role to belong to FCZ and C5 EEG electrodes. Moreover, the similarity in 
this context of real movement with the imagery one was seen with this methodology as well. The 
reproducibility of the results using the EMD-based selection of beta range activity and the subsequent 
synchronization analysis, forward this method as an alternative, adaptive method of identifying 
intrinsic oscillations within data, providing a new way to determine the particular frequency 
bandwidths in which synchronization phenomena occur. 

4. Conclusions 
The symmetric and non-linear measures of interaction like the phase synchronization index may 

detect consistently patterns of connectivity between distinct neural populations. The results show 
consistency as various methods have been used in order to extract the phase from the signals. The 
reproducibility of the results indicate that phase indeed contains the information needed to code the 
connect connectivity and interrelations between neuronal populations and can be safely used as an 
extra input feature for BCI research.  
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