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Abstract. We propose and demonstrate a novel method for analyzing human EEG at a single-

subject and single-trial level. We focus here on the analysis of data from an auditory object recognition 
experiment. The analysis is based on the topographic information that can be extracted in response to 
each stimulus. Temporally structured periods were statistically identified wherein a given topography 
predominated without any prior information about the temporal behavior and at single-subject level. 
Within these periods of stability, we were able to statistically identify the time periods over which 
responses to different object categories differed. In addition to providing novel methods for EEG 
analysis, these results show intriguing evidence that Event Related Potentials (ERPs) are reliably 
observable at a single-trial level when examined topographically. 
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1. Introduction 
High temporal resolution scalp electroencephalography (EEG) is typically used to investigate 

responses to external stimuli by averaging peri-stimulus epochs at each electrode and across the entire 
montage. This procedure provides an estimation of the event-related potential (ERP), eliminating to a 
great extent the instrumental and physiological noise present at the single-trial level. The drawback of 
this approach is the inevitable loss of any non-phase-locked activities as well as smearing due to 
latency jitter across trials. Moreover, collapsing all the original information to an average response 
often prevents the performance of statistical analyses of effects at a single-subject level. This is 
particularly needed when studying individual patients with specific sensory-cognitive impairments.  

Due to these and other limitations of canonical ERP analyses, increasing attention in the 
neuroscientific community has been devoted to the development of single-trial analysis methods. The 
majority of these approaches are based on modeling the brain processes underlying the amplitude 
modulations of the EEG signal. Among them, Independent Component Analysis has been proposed to 
disentangle contributions to the EEG that are spatially fixed but temporally independent [1]. The 
differentially Variable Component Analysis (dVCA) has been introduced in order to identify multiple 
evoked components using trial-to-trial variability [2]. Moreover, several other approaches have been 
proposed for filtering and de-noising the single electrical responses at specific electrodes [3][4][5]. 

In this paper, we propose an approach to contrast statistically two experimental conditions at a 
single-subject level using solely spatial features of the electric field and without taking into account 
any a priori temporal information [6]. We demonstrate the method on data previously analyzed at an 
ERP level including microstates analysis [7]. These previous results provide a comparison that can 
support the reliability of the present method. 

2. Methodology 
Subjects, stimuli, and task 
 
Nine healthy subjects (six female), 21-34 years of age participated after providing written 

informed consent to the experimental procedures that were approved by the Ethics Committee of the 
University of Geneva. All subjects were right-handed. Auditory meaningful sounds of common objects 
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-500 ms in duration- were used for a target detection task [7]. On each block of trials, subjects were 
asked to discriminate target sounds via a button press. Targets (10% in each block) were living or man-
made auditory objects alternating in each block of trials. Each block comprised 300 trials and each 
subject completed four blocks. 

 
EEG acquisition and pre-processing 
 
Continuous 64-channel EEG was acquired through Neuroscan Synamps, referenced to the nose, 

band-pass filtered 0.05-200 Hz, and digitized at 1000 Hz. Peri-stimulus epochs of continuous EEG (-
100 to 500 ms) were obtained from each subject separately for each category of sound of object (living 
and man-made). DC correction and a 50 Hz notch filter were applied to each epoch. Trials with blinks 
or eye movements were rejected off-line, using a criterion of ±100 µV applied at all electrodes. Data 
from artifact electrodes from each subject and trial were interpolated using a 3-Dimensional spherical 
spline [8]. Data were finally recalculated against the average reference and down-sampled to a 62-
channel montage. No baseline correction was applied. 

In the following, we will consider two datasets: dataset1 will refer to the trials involving 
presentation of sounds of living objects, and dataset2 will refer to the trials involving presentation of 
sounds of man-made objects. In each of these two datasets the number of distracter and target trials is 
counterbalanced. Sixty EEG epochs in each dataset and for each subject is considered. 

 
Single-trial analysis 
 
 We define a potential map as the vector of potential measurements at one time frame after the 

Global Field Power (GFP) at each time point [9] has normalized it. The algorithm is based on 
clustering maps with similar spatial features considering at once all the potential maps of both datasets. 
The estimation of the clusters is achieved using an expectation maximization algorithm for a mixture 
of Q (here Q=5) Gaussians [10][11]. We do not make any assumption about the temporal information 
conveyed by the maps because all the data are pooled together in the same N-dimensional space, where 
N is the number of electrodes.  

The algorithm is initialized with a first estimation of the priors, the centers and the covariance 
matrix for each Gaussian. A k-means algorithm with 500 iterations is used to determine the centers 
[12]. The priors are computed from the proportion of examples belonging to each cluster. The 
covariance matrices are calculated as the sample covariance of the points associated with (i.e. closest 
to) the corresponding centers. A new estimate of priors, mean maps and their covariance was achieved 
by 500 iterations of the expectation-maximization algorithm. 

The estimated model was used to label the data according to the higher conditional probability. 
The labeled data were then reorganized recovering their position in time and for each trial, considering 
the two datasets separately. This new representation of the evoked response can demonstrate whether 
there exist specific patterns for each condition at a single-trial level. 

To statistically evaluate our results, first a one-way repeated measures ANOVA was performed on 
the conditional probabilities for each of the two datasets; next, a series of post-hoc paired t-tests was 
performed between pairs of conditional probabilities as a function of time. To account for temporal 
auto-correlation, we applied a criterion to both the ANOVA (α<0.05) and t-tests (α<0.01), such that an 
effect was only considered statistically robust if it was significant for at least 11 consecutive data 
points [4]. The series of post-hoc t-tests was subdivided in two groups of analysis. First, we contrasted 
the conditional probabilities related to different maps in the two datasets and extracted those temporal 
periods during which only one map was significantly higher than all the others (Fig 1, e2). Secondly – 
within those periods - we contrasted the conditional probabilities related to the same maps and across 
datasets. This second series of t-tests provides an estimate of the differences elicited by the two types 
of stimuli at a single-trial level (Fig1, e3). 

3. Results 
We here present the results for one subject of the group. Results show that the occurrence of each 

map is structured in time and consistent across trials (Fig1, a-b). Indeed, the mean conditional 
probabilities across trials (Fig1, c-d) shows that there was a higher posterior probability of a given map 
for specified post-stimulus onset periods, which was not evident before the stimulus onset. The one-
way repeated measures ANOVA identified a main effect of map over several post-stimulus time 
intervals, as well as some short-lived periods during the pre-stimulus period (Fig1, e1). 
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 From the post-hoc t-tests, we identified several periods over which only one map was significantly 
predominant (Fig1, e1-e2). Contrasting statistically the conditional probabilities for each map in the 
two conditions, we were able to identify several time periods of interest (Fig1, e.3); only one of those 
periods survived to the 11-samples temporal criterion and this was related to the occurrence of map 
four over the period 200-213 ms (Fig1, e.3).  

 
 

 
Fig1. (a-b) Labels according to the highest conditional probability at each time frame and trial; (c-d) mean 
conditional probability of each map; (e) statistical analyses: e.1 light blue highlights period of significant 
difference bethween conditional probabilities for each map based on one way Anova; e.2 periods over which one 
map was predomint over the others based on t-test;e.3  t-test probability contrasting the same maps in the two 
conditions (restricted to the interval of where one map was dominant). (f) Mean maps for each cluster. 

 
4. Discussion 

 
We proposed and demonstrated a novel approach to analyze ERPs at a single-subject level based 

solely on topographic information. The method allows for statistically identifying time periods over 
which two conditions differ most with minimal a priori constraints.  

This novel approach offers ERP visualization [13] at a single-trial level with the same temporal 
resolution as the original EEG data. Other single-trial analysis methods, based on the EEG amplitude 
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modulation instead of topographies, require ad hoc filtering of the single waveforms [3][4][5] or strong 
hypotheses about the underlying brain activity (i.e. ICA) [1].  

We implicitly demonstrated that by modeling the data’s noise as a mixture of Gaussians we are 
able to provide an ERP representation that is consistent across trials and structured in time. This 
evidence is in agreement with our expectation that the topography of the electric field at the scalp 
exhibits temporal structure – i.e. microstates – that can last from tens to hundreds of milliseconds 
[14][15][16]. The result is particularly convincing because we did not take into account temporal 
information and therefore they can be interpreted as an inherent property of the data. 

In order to demonstrate the method we applied the algorithm to a published data set, previously 
analyzed at a group-average ERP level [7]. The results obtained with the present method show several 
points of agreement with the previous analysis, supporting the reliability of this novel approach. Indeed, 
the difference found between the two conditions is within the same temporal period. The here derived 
template maps present evident similarities with the microstates estimated in the ERP analysis and are in 
general agreement with auditory evoked potential (AEP) components typically observed at ERP level 
[17].  

One limitation of the presented methods is its necessity for a priori constraining the number of 
clusters. One solution to this could be to incrementally increase the number of clusters until a limit is 
reached at which one or more of the additional maps are only negligibly present in the representation, 
much like what has been proposed for dipole modeling.  

Future directions include establishing whether this model can be informative about trial-specific 
activity (e.g. reaction time, accuracy, or other classifiers for the stimulus being encountered), and to 
investigate the relation between this approach and other single-trial representations, such as the one 
based on Independent Component Analysis. Another important direction is investigating inter-trial 
variability as a result of plasticity or learning effects, and also inter-individual differences. This is 
particularly needed when analyzing patients with specific sensory-cognitive impairments and their 
brain activity in comparison to healthy populations. 
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