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Abstract. Motor imagery as rehabilitation method after stroke is becoming an important tool and is 
currently also heavily researched. One issue, however, is to quantify and monitor changes in the 
ongoing brain activity and to document brain plasticity. Here, we analyze the electroencephalogram 
(EEG) of hemiparetic stroke patients during left hand and right hand motor imagery in order to 
determine whether time-frequency maps of Event-Related Desynchronization (ERD) and Event-
Related Synchronization (ERS), and single-trial classification by means of the Distinctive Sensitive 
Learning Vector Quantification (DSLVQ) method are suited to keep record of the changing brain 
activity.  
K eywords: Motor imagery, Stroke, Electroencephalogram (EEG), Event-Related Desynchronization (ERD) 

Introduction  
Recently the use of motor imagery, i.e. the imagination of body limb movements, is considered as 

one promising therapeutic approach to recover motor impairment (hemiparesis) after stroke (Stevens et 
al. 2003, Sharma et al. 2006). The advantage of this method is that any patient, independently whether 
residual muscle activity is available or not, can undergo training. The only requirement is voluntary 
mental activity. One drawback, however, is the missing of proper screening and monitoring tools which 
allow an objective quantification of the therapy-based improvement (Sharma et al. 2006). 

It is generally accepted that motor imagery, defined as the imagined rehearsal of a motor act, 
involves to a large extent the same cortical areas that are activated during actual motor preparation and 
execution (Jeannerod and Frank ,1999, Ehrsson et al. ,2003, Solodkin et al. 2004). Accordingly, motor 
imagery produces changes in sensorimotor brain oscillations that occur naturally in movement planning 
and execution. These brain signals can be easily recorded from scalp electrodes over central head 
regions and are relatively straightforward to detect. Because these rhythms are generated in cortical 
areas most directly connected to the brain’s normal motor output channels, they are particularly 
promising and provide the possibility to monitor and improve recovery of motor functions in clinical 
rehabilitation (Birbaumer et al, 2006) 

Here, we analyze electroencephalographic (EEG) recordings of hemiparetic stroke patients by 
using methods, which are well established, in the Brain-Computer Interface field to determine the most 
sensitive frequency components able to discriminate between a resting state and the execution or the 
imagination of hand movements. For this discrimination, two methods are used. The first is based on an 
averaging procedure and the calculation of Event-Related Desynchronization (ERD) and Event-Related 
Synchronization (ERS) patterns (Pfurtscheller and Lopes da Silva, 1999). The second method classifies 
single EEG trials by using the Distinctive Sensitive Learning Vector Quantification (DSLVQ, 
Pregenzer et al 1999) method. From Pfurtscheller et al. 1981 we have already evidence that 
sensorimotor EEG activity of stroke patients is correlated to the execution of hand movements. The 
most important brain oscillations involved in the planning phase of self-paced hand movement and 
motor imagery are the Rolandic mu rhythm (7-13 Hz) and the central beta rhythm (13-30 Hz) 
(Pfurtscheller and Neuper 1991). It is therefore of interest whether the EEG of stroke patients show 
similar dynamic patterns compared to the patterns found in healthy people (e.g. Neuper et al. 2005) and 
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whether the utilized methods are suitable to characterize and monitor motor imagery related brain 
activity in stroke patients.  

2. Material and Methods 

2.1 Subjects and data acquisition 
Seven right-handed patients (2 females, 5 males, mean age 44.9 years, SD=13.2) participated in 

this study. All gave informed consent after the aim of the study and the experimental procedure had 
been explained to them. Patients had sustained their first-time stroke between 2 and 36 months prior to 
the study (mean time since onset: 13.9 months, SD = 14.7). All subjects suffered from unilateral lesion 
(cortical and/or subcortical) because of the cerebrovascular damage. See Tab.1 for more details. The 
lesion was located in the right hemisphere and had led to hemiparesis of the left upper extremity 
directly after stroke onset.  

Three bipolar EEG-channels were recorded from 6 Ag/AgCl scalp electrodes placed over 
sensorimotor hand and foot representation areas (2.5 cm anterior and posterior to electrode positions 
C3, Cz and C4, 10-20 system).Electrode Fz was used as ground (Fig.1.A).  The EEG signal was band 
pass filtered between 0.5 and 30 Hz (50 Hz Notch filter) and sampled at 125 Hz.  

 
Table 1. Patient information.  

Id Age Gender 
Months 

after stroke
Hemiparesis

 

s0 37 M 3 0 L 
s1 57 F 23 0-1 L 
s2 28 M 36 0-1 L 
s3 66 M 2 3 L 
s4 49 F 3 5 L 
s5 41 M 28 4-5 L 
s6 36 M 3 4-5 L, 5 R 

L = Left, R = Right 

 
 

 
 

Figure 1. A. Electrode set-up. B. Timing of the experimental paradigm. 

 

2.2 Experimental paradigm 
A cue-based experimental paradigm was used to collect trials of left hand and right hand motor 

execution (ME) and motor imagery (MI). Four experimental runs were recorded for each patient. The 
sequence was ME, MI, ME and MI. Each run consisted of 30 trials (15 left hand and 15 right hand). 
Each trial started with the presentation of an acoustical warning tone and a fixation cross (t=0.0s). One 
second later, an arrow (cue) pointing to the left (left hand) or to the right (right hand) specified the task 
to be performed. The order of the arrows was randomized. To avoid adaptation to the experimental 
timing, cues were presented in randomized intervals between 8s and 10s (Fig.1.B). Before each run, the 
experimenter explained the task and showed the required movement, i.e. compress a rubber ball. 
Subjects were asked, considering the severity code of the hemiparesis, to clench or even move the 
finger (duration approximately 2 s) during the ME runs. During MI subjects were told to imagine 
performing the motor sequence while not moving the fingers. During the measurement participants sat 
relaxed on their chair with eyes open. 
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2.3 Time-frequency ERDS maps 
Before further analysis, the recorded EEG was visually inspected and trials containing muscle 

artifacts were omitted.  
To visualize the desynchronization/synchronization patterns, ERD/ERS maps were calculated for 

each single channel. ERD/ERS maps are time-frequency plots that display significant power decrease 
(ERD) or increase (ERS) in predefined frequency bands. Topographically arranged, they give a clear 
overview of the movement-related behavior of the non-phase locked activity over a broad frequency 
range. Relevant information is immediately accessible concerning which frequency component at what 
electrode location displays which type of significant reactivity.  

The calculation of ERD/ERS maps requires event-related trials that are time-locked to a trigger 
event. For this study, trials of length 8 seconds (starting 2 seconds before the trial begin) were used. To 
remove the influence of event-related potentials, the inter-trial variance method was applied (Graimann 
et al. 2002). The baseline activity, i.e. the reference value that was used to calculate percentage values, 
was determined by averaging samples in the interval [-1.5 -0.5]s before trial begin. Frequency bands of 
2 Hz with 1Hz overlap and ranging from 6 to 40Hz were calculated. Details about the calculation of 
ERD/ERS maps can be found in Graimann et al 2002. 

2.4 Single Trial classification 
To identify the most discriminative frequency components the Sensitive Learning Vector 

Quantization (DSLVQ, Pregenzer et al. 1999) method was applied to each channel individually, as well 
as to features pooled together from all three channels. DSLVQ is an extended Learning Vector 
Quantizer (LVQ) that employs a weighted distance function for dynamical scaling and feature selection. 
LVQ classification is based on a small set of labeled reference vectors (codebook) and a Voronoi 
tesselation of the vector space. A sample x(t) is classified to the label of its closest codebook mj 
according to a distance function (Euclidean distance). For the LVQ classification result, each feature 
contributes equally. DSLVQ introduces a weighted distance function to discriminate more or less 
distinctive features. During the learning process, the influence of features that lead to a 
misclassification is reduced, while the significance of features that contribute to a correct classification 
is increased. The major advantage of DSLVQ is that it does not require expertise, nor any a priori 
knowledge or assumption about the distribution of the data.  

The frequency components investigated by DSLVQ were computed by band pass filtering the EEG, 
squaring and averaging the samples in the analyzed 200ms second time window. From this averaged 
value the logarithm was calculated. The features were extracted from the trials described in section 2.2. 
The trials were subdivided into N=31 non-overlapping time intervals of 200 ms length and time-lag of 
200 ms. For each interval 23 overlapping frequency components between 6 – 30 Hz with a bandwidth 
of 2 Hz were calculated. The time interval from second -0.7 to -0.5s (before start of trial) was selected 
as the reference time interval. With the features computed from the reference interval (labeled as class 
1) and the features extracted from the ith interval (class 2) a DSLVQ analysis was performed. The 
value of i was stepwise increased from 2 to 31 (0.0s to 6.0s in steps of 200ms). In order to obtain 
reliable values of the classification performance and the feature relevance, in each step the DSLVQ 
method was repeated 100 times. For each run of the DSLVQ classification, a randomly selected 50% of 
the computed features were used for the training and the remaining 50% were kept to test the classifier. 
Each class, represented by 3 codebook vectors, was initialized with k-means clustering. The initial 
clustering was repeated when a codebook represented less than 5% or more than 75% of the total 
number of samples for a maximum of 100 retries. The DSLVQ classifier was fine-tuned with type C 
training (10000 iterations). The learning rate αt decreased during this training from an initial value of 
αt = 0.05 to αt = 0. The DSLVQ relevance values were updated with the learning rate . 10/

tt
αλ =

3. Results 

3.1 Selection of reactive frequency components  
The averaged time-frequency ERD/ERS map (confidence level α=0.05) for each channel, task and 

modality (ME or MI) are depicted in Fig.2. The first row shows reactive frequencies during left hand 
motor imagery; the second row time-frequency patterns during right hand motor imagery. Relevant 
ERD patterns for the imagination of hand movements were found in the frequency bands 8-12 Hz and 
15-22 Hz of the undamaged (left) hemisphere and the midline area. The damaged (right) hemisphere 
does not show significant activity. Row 3 and 4 show the ERD/ERS patterns during the execution of 
left hand and right hand movements, respectively. Again, relevant ERD patterns were found in the 
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frequency bands 14-22 Hz of the undamaged hemisphere and the central area; no significant activity 
over the damaged hemisphere was observed. 
 

 
 

Figure 2. Grand-average  time-frequency ERD/ERS maps (N=7, α=0.05, reference interval [-1.5 -0.5]s).  

 
The DSLVQ results are summarized in Fig.3. The curves show the average classification accuracy 

over time computed independently for channel C3, Cz and C4, as well as for the combination of all 
three channels. For the latter, i.e. by providing all the available information to the method, the 
corresponding DSLVQ feature relevance values are depicted. The computed accuracies show that the 
undamaged left hemisphere (C3) and midline contribute most to the classification between “rest” and  
motor execution/imagery. Expectedly, due to the lesion, it was not possible to classify the oscillatory 
brain activity of the damaged hemisphere. The maximum averaged classification accuracies were 
71.3% at t=2.2s for left hand MI and 74.9% at t=2.2s for left hand ME. For right hand MI the computed 
accuracy was 70.7% at t=3.2s. Right hand ME was detected with an accuracy of 76.3% at t=2.2s. The 
individual maximum classification accuracies for MI and ME are summarized in Tab.2 and Tab.3, 
respectively. Classification accuracies between 74-79% were computed. 

The DSLVQ feature relevance show reactivity in the mu and beta band for right hand MI and right 
hand ME over electrode position C3. In contrast, no mu activity was observed for left hand MI and left 
hand ME. The damaged hemisphere (C4) does not show task-related activation in specific frequency 
bands for right hand MI. There is, however, a weak activation for left hand MI/ME. 

For comparison for channel C3 and C4 the averaged (over subjects) logarithmic band power values 
for each frequency component in the reference interval is depicted in Fig.4. Smaller values were found 
over the damaged hemisphere compared to the healthy hemisphere. 
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Figure 3.DSLVQ classification accuracies and feature relevance estimation. 
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Table 2. DSLVQ classification results for motor imagery. For each subject the maximum classification accuracy 
(%) and corresponding time (t) in s for left hand, right hand  motor imagery are summarized.  

 Left Right 
Id C3 Cz C4 All C3 Cz C4 All 
  Acc t acc t acc t acc t acc t Acc t Acc t acc t 

s0 69,7 3,0 61,8 3,6 60,8 2,4 71,2 3,0 74,5 2,6 61,1 2,2 63,8 1,6 71,5 2,4
s1 67,0 2,8 63,6 0,8 59,0 1,0 68,7 0,8 71,9 2,2 56,1 2,2 54,6 0,2 71,8 2,2
s2 68,5 2,2 61,7 2,2 59,6 2,2 71,7 2,2 80,3 2,4 69,4 2,2 58,3 3,0 79,7 2,2
s3 71,0 2,2 71,5 2,2 57,0 1,8 75,2 2,0 81,2 2,2 80,3 2,0 55,7 4,4 82,0 2,2
s4 80,3 2,8 70,3 3,6 81,2 2,4 83,5 2,6 80,7 2,4 66,0 3,2 65,2 2,4 82,2 2,6
s5 71,0 2,4 72,6 2,2 62,1 2,8 77,4 2,6 80,9 2,6 80,3 2,8 61,7 2,8 83,0 3,0
s6 58,4 1,8 62,9 2,0 68,7 2,0 71,4 2,2 64,6 2,4 58,9 1,2 59,5 2,2 66,7 2,2

MN 69,4 2,3 66,3 2,4 64,1 2,1 74,2 2,2 76,3 2,4 67,4 2,3 59,8 2,4 76,7 2,4
SD 6,5 0,5 4,9 1,0 8,4 0,6 5,0 0,7 6,3 0,2 9,8 0,6 4,0 1,3 6,6 0,3

 

 

Table 3. DSLVQ classification results for motor execution. For each subject the maximum classification accuracy 
(%) and corresponding time (t) in seconds for left hand, right hand  motor execution are summarized.  

 Left Right 
Id C3 Cz C4 All C3 Cz C4 All 
  Acc t acc t acc t acc t acc t acc t acc T acc t 

s0 64,2 2,8 60,6 2,6 65,0 2,8 70,3 2,8 82,0 2,8 64,1 2,0 55,6 1,4 75,5 2,8
s1 79,6 3,2 71,7 2,6 63,4 2,6 79,9 2,6 83,5 3,2 71,4 2,2 60,1 2,0 83,5 3,2
s2 70,7 2,4 67,4 2,8 59,4 3,6 68,1 2,2 78,0 2,4 71,3 3,2 69,3 2,0 80,2 2,0
s3 67,5 5,0 78,6 3,2 61,9 2,0 72,9 5,0 68,1 2,2 75,8 2,0 63,1 2,6 78,4 2,2
s4 83,2 3,6 78,2 2,6 88,5 2,4 91,5 3,6 92,3 3,6 85,9 2,2 83,2 2,4 90,2 3,2
s5 61,6 5,8 72,5 2,0 59,4 2,8 68,1 2,2 65,2 2,2 72,6 2,0 59,0 3,4 72,6 2,2
s6 55,9 1,2 57,2 1,4 71,9 2,4 69,4 2,6 70,2 2,4 61,6 1,0 67,8 2,0 73,0 2,0

MN 69,0 3,4 69,5 2,5 67,0 2,7 74,3 3,0 77,0 2,7 71,8 2,1 65,4 2,3 79,1 2,5
SD 9,7 1,6 8,3 0,6 10,4 0,5 8,6 1,0 9,7 0,5 8,0 0,6 9,2 0,6 6,3 0,5

 

 
 

Figure 4. Logarithmic band power of the reference interval [-0.7 -0.5]s (before trial start)over the healthy (C3) 
and damaged hemisphere (C4).  

 

Discussion and Conclusion 
The grand-average ERD/ERS maps show that right (unaffected) hand motor execution (ME) and 

motor imagery (MI), in accordance with the literature, activates the undamaged contralateral 
hemisphere (ERD in the mu and β-band). The damaged ipsilateral sensorimotor area does not reveal 
such an activation pattern. ME and MI of the affected left hand induced very similar patterns in the 
undamaged hemisphere as obtained with right hand MI. To some extent, also the midline central area 
shows frequency specific activation. However, no common activation pattern was found over the 
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damaged hemisphere. This observation is not unexpected due to the fact that the underlying brain 
structures were damaged. Neuroimaging studies have clearly shown an activation of homologous areas 
in the unaffected hemisphere during movement of the affected hand (Feydy et al., 2002). Movement-
related reactivity of mu and beta rhythms has been investigated in subacute (Platz et al., 2000) and 
chronic stages after ischemic stroke (Gerloff et al. 2006).  

The same characteristic could be observed for the single-trial classification results. The undamaged 
hemisphere shows strong activation patterns for left hand ME/MI as well as for right hand ME/MI. A 
comparison of the identified frequency components with data from healthy subjects performing MI 
(Neuper et al. 2005) show similar activity in the mu and beta range for right hand MI. In accordance 
with Platz et al., 2000 reduced alpha-ERD and beta-ERD was found over the damaged hemisphere. 
This reduced activity can be traced back to a reduced baseline spectral density (Fig.4). 

The results of this study suggest that ERD/ERS time-frequency maps and DSLVQ classification 
are proper tools to monitor motor imagery related brain activity in stroke patients and contribute to 
quantify the effectiveness of motor imagery. Due to the low number of EEG sensors needed to 
document dynamics of brain activity at specific motor cortical regions (i.e. the hand area), computing 
time-frequency ERD/ERS maps or performing a DSLVQ analysis to monitor imagery-related brain 
responses is also reasonable from a practical point of view.  
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