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Abstract. We evaluate a large number of measures used in the statistical and nonlinear analysis of EEG 
as to their power in discriminating different preictal states. Some new measures are proposed and the 
analysis involves also feature time series, such as local minima and maxima, the time between them, as 
well as interspike intervals. The measures are computed on consecutive non-overlapping segments of 
30 s of multichannel scalp EEG at the preictal period of several hours. The discrimination power of 
each measure is assessed by the receiver operating characteristic (ROC) curve computed on measure 
values grouped in different preictal stages. The results on 7 epileptic EEG records show that simple 
measures have the same, and at cases better, power in discriminating preictal states than other more 
sophisticated measures. 
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1. Introduction 
The prediction of epileptic seizure from electroencephalograph recordings (EEG) is an open issue 

and there is still no method that can reliably provide in a reliable way such predictions. The advance of 
nonlinear dynamics and chaos, along with other fields, such as synchronization, networks, random 
matrix theory, and statistical testing, have given rise to measures and approaches that have been used 
in the analysis of preictal EEG with varying success [Andrzejak et al., 2003; Stam, 2005; Iasemidis et 
al., 2005]. Over the last years the propositions of measures for seizure prediction have escalated but 
only few works focused on evaluating and comparing even a subset of these measures, as in [Mormann 
et al., 2005], leaving a gap of validation of the proposed measures. Very recently, critical reviews have 
pointed that there is a long way to go before we can establish statistical significance for the 
predictability of any measure in terms of its sensitivity and specificity [Mormann et al., 2006; 
Mormann et al., 2007; Gudmundsson et al., 2007]. These remarks are supported by the failure of any 
approach to score adequately in the recent competition of seizure prediction (Seizure Prediction 
Competition, Freiburg, October 2007).   

There is an obvious need to review the large number of proposed measures before any of them can 
be used in clinical testing. Along these lines, recently a number of different measures of scalar time 
series analysis were tested in discriminating early and late preictal stages in [Kugiumtzis et al., 2006]. 
We extend this study to include most of the measures that have been used so far in univariate EEG 
analysis. Moreover, we modify some of the known measures of correlation and propose some new 
measures as well. On top of these measures that are estimated directly on the oscillating EEG time 
series, we extract from the original EEG 7 feature time series that regard different characteristics of the 
oscillating EEG signal, such as the local minima and maxima. We compute on the feature time series 
some simple statistics as well as some of the same measures computed on the original EEG. An 
indisputable advantage of the measures on the feature time series is that are computationally efficient 
as the length of the feature time series is a small fraction of the original EEG. 
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A complete and exhaustive evaluation of all these measures would include a good number of 
different EEG measurements (scalp, intracranial), epilepsy seizure types, physiological conditions, data 
pre-processing, and varying duration of the tested preictal period, and all these require an excessive 
amount of resources and computation time. Here the evaluation study is confined to 7 scalp multi-
channel EEG recordings of preictal periods lasting at least 3 h and all seizures are generalized tonic 
clonic. The interest is in the power of the measures in discriminating late preictal state (just before 
seizure onset) to earlier preictal states. For this the statistic of the area under the receiver operating 
characteristic (ROC) curve is used and the measures are ranked according to their ROC-relate scores. 

The structure of the paper is as follows. In Section 2, the data and the measures are presented and 
in Section 3 the results of the evaluation of the measures with regard to score ranking are given. The 
results are discussed and conclusions are drawn in Section 4.  

2. Material and Methods 

2.1. The EEG data 
The EEG data were recorded on a routine basis at the Department of Neurodiagnostics, 

Rikshospitalet University Hospital, Norway. They comprise of 7 preictal multi-channel scalp EEG 
records, each regarding a single episode of a generalized tonic clonic seizure from a different patient, 
covering at least 3 h prior to the seizure onset. Recordings with 63 channels, according to the 10-10 
system are used for the two first EEG sets (denoted A and B), while for the other 5 EEG sets (denoted 
from C to G) recordings were done with 25 channels according to the 10–20 system with added low 
rows. Reference electrode was placed at CP1 as defined in 10 – 10. Fronto-polar channels are excluded 
because they tend to contain continuous artefacts, bringing down the number of channels to 53 and 19, 
respectively. As all methods considered in this study do not rely on very high frequency components, 
the data were high-pass filtered at 0.3 Hz, low-pass filtered at 40 Hz, and down-sampled at 100 Hz 
(0.01 s). The latter was done to improve computation efficiency. No procedure for artefact removal or 
any other form of pre-processing was applied in order to assess the methods under standard conditions 
of clinical practice. 
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Figure 1. A close-up of an EEG segment in (a) and the histogram of this segment in (b). The same for the 

“Gaussianized” segment in (c) and (d). 
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Each record was split into consecutive non-overlapping segments of duration 30 s giving N=3000 
samples at each segment, denoted 1{ }N

t tx = . The EEG signal exhibits irregular fluctuations and has 
seldom Gaussian amplitude, i.e. the empirical marginal cumulative density function (cdf) ( )x tF x  of a 
segment 1{ }N

t tx =  deviates from Gaussian. This can be seen from the histogram of a typical 1{ }N
t tx =  in 

Fig.1b (a close-up of the segment is shown in Fig.1a). A large deviation from Gaussian marginal 
distribution can affect measures sensitive to the amplitude distribution. We therefore consider a static 
transform of 1{ }N

t tx =  to the “Gaussianized” time series 1{ }N
t ty =  that possesses Gaussian marginal cdf 

( )tyΦ , and it is given as ( )1 ( )t x ty F x−= Φ . As shown in Fig.1c and d, this transform renders the 
amplitude normal (Gaussian) without alerting the dynamics of the time series. It was observed in 
[Kugiumtzis et al., 2006] that correlation measures would perform discrimination tasks on preictal 
EEG better when the data were Gaussianized. Therefore many of the measures were computed on 

1{ }N
t ty =  instead of 1{ }N

t tx = .  

2.2. Measures on the original EEG  
A large number of measures are computed on the oscillating EEG time series. The correlation 

measures are estimated on 1{ }N
t ty =  to eliminate the effect of heavy tails and outliers in the signal 

amplitude distribution. A list of the correlation measures is given in Table 1. 

Table 1. Correlation measures on the Gaussianized EEG time series. Each line regards a measure type and the 
number of measures derived for different parameter values is given in the third column. 

Symbol Description # 
eτ  decorrelation time, lag for P ( ) 1/y er eτ =  (see below)   1 

maxτ  lag of levelling of mutual information (see below) 1 
P ( )yr τ  

P P
max(40), ( )y yCr Cr τ  

(Pearson) autocorrelation at 5,10,20,30τ =  
Cumulative autocorrelation for lag 40 and maxτ   

4 
2 

S S,y yr Cr  Same as above for Spearman autocorrelation 6 
K K,y yr Cr  Same as above for Kendall autocorrelation 6 

,y yI CI  Same as above for mutual information 6 

,y ydI dCI  Same as above for g
y yI I−  where P0.5ln(1 )g

y yI r= − −  6 
b b,y yr Cr  Same as above for bicorrelation (not for 30τ = ) 5 

 
The standard correlation coefficients of Pearson, Spearman and Kendall are used as measures of 

autocorrelation at different lags ( 5,10,20,30τ = ) and the decorrelation time, i.e. the lag at which the 
Pearson autocorrelation function first equals to 1/e, is also included as a measure of memory in the 
system [Martinerie et al., 1998; Ehlers et al., 1998; Andrzejak et al., 2006]. In addition, the cumulative 
autocorrelation is computed (for Pearson, Spearman and Kendall), summing the square of 
autocorrelation up to a maximum lag. Two choices of maximum lag are considered, a fixed value (set 
to 40) and the lag for which the mutual information is leveling off according to a criterion for 
flattening. The latter is also used as a measure. Mutual information and cumulative mutual information 
are used in order to quantify both linear and nonlinear dependencies for the same lags as above, where 
the estimation is based on histogram of 16 equidistant bins [Chillemi et al., 2003; Nicolaou and Nasuto, 
2005; Papana and Kugiumtzis, 2007]. In an attempt to include a measure of solely nonlinear 
correlations we compute the difference between the mutual information at some lag from the 
normalized time series 1{ }N

t ty = , yI , and the “Gaussian” mutual information g
yI , i.e. the mutual 

information as if 1{ }N
t ty =  is from a Gaussian process with autocorrelation r  given as 0.5ln(1 )g

yI r= − −  
[Darbellay and Vajda, 1999]. We include also a different nonlinear autocorrelation measure based on 
the third-order joint moment, referred to as three-point autocorrelation or bicorrelation and compute it 
at lags 5,10,20τ = . Moreover, we consider the cumulative bicorrelation by summing the 
bicorrelations up to lag 40. 

Another class of measures listed in Table 2 regard other characteristics of the underlying system, 
such as dimension, entropy and complexity. Some of these measures are based on the nonlinear 
dynamics theory and require the reconstruction of state space from the scalar time series with the 
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method of delays determined by the embedding dimension m and the delay τ  [Kantz and Schreiber, 
1997]. A popular measure of fractal dimension is the correlation dimension, but reliable estimation of 
it requires scaling of the correlation integral, C(r) with the distance r that hardly can be maintained on 
preictal EEG data. Therefore we consider as a measure of point density the C(r) at a fixed distance 
(r=0.2), in line with other studies on EEG [Lerner et al., 1996; McSharry et al. 2003; Andrzejak et al., 
2006]. Our modification in using 1{ }N

t ty =  instead of the original EEG in the computation of C(r) has 
also an operational advantage: it suppresses the dependence of r on the amplitude changes in the 
original EEG. Moreover, we use a reconstructed state space of low and high dimension (m=5,10) for a 
fixed delay ( 10τ = ). In an inverse manner, we consider the distance r that regards C(r)=0.1, which has 
been used as another measure of determinism [Ehlers et al., 1998]. A different measure based on inter-
point distance and neighborhood in the reconstructed state space is the measure of false nearest 
neighbors (FNN) that estimates the percentage of false nearest neighbors at each embedding dimension 
by tracking their distance at the augmented state space increased by one dimension [Kennel et al., 
1992]. We compute this percentage at m=5,10. A popular measure of chaos is the estimation of the 
largest Lyapunov exponent λ , which has been one of the first measures based on nonlinear dynamics 
to be applied for the prediction of epileptic seizures with reporting success until to-date [Iasemidis et 
al., 1991; Iasemidis et al., 2005; patent Sackellares et al., 2007]. Here we apply a standard computation 
scheme for λ  from the Lyapunov spectrum estimation as implemented in the non-commercial 
software package TISEAN [Hegger et al., 1999], using two neighborhood sizes (20 and 40 neighbors) 
and state space reconstruction parameters as for the other measures. 

Table 2. Measures of dimension, entropy and complexity listed as in Table 1. 
Symbol Description # 

( , )yC r m  correlation integral for r=0.2 and m=5,10 2 

( , )yr C m  distance for ( ) 0.1yC m =  for m=5,10 2 

FNNx(m) % of false nearest neighbors, τ =10 and m=5,10 2 

( , )y m Kλ  Largest Lyapunov exponent using local maps  
τ =10, m=5,10 and K=20,40  

4 

AE ( , )y r m  Approximate entropy for r=0.2 and m=5,10 2 
dACx    pACx  

dAC y  
Algorithmic complexity: 16 equidistant and equiprobable bins. 
The same for “Gaussianized” data and 16 equidistant bins 

2 
1 

,y yHjM HjC  Hjorth parameters: mobility and complexity 2 

SE y  Spectral entropy (frequencies in [0.5,48]) 1 

E ( )y i  i=δ,θ,α,β,γ Energy in δ,θ,α,β,γ frequency bands  5 
mf median frequency (frequencies in [0.5,48]) 1 

, ,y y yHeS HeE HeC  Hurst exponent: Slope, Fit error, Relative Change 3 

, ,y y yDFS DFE DFC Detrended Fluctuation Analysis: as above  3 
 
In the same list of measures, the approximate entropy is a standard measure of entropy and system 

complexity [Burioka et al., 2003], and we compute it here for the same parameters as for C(r). Other 
measures of complexity included in our study are the algorithmic complexity and the so-called Hjorth 
mobility and complexity parameters. The algorithmic complexity measures the complexity of a 
sequence of symbols derived from the original data by partitioning its values in bins and assigning a 
symbol at each bin [Ziv and Lempel, 1978]. We use 16 bins and both equidistant and equiprobable 
partitioning. The Hjorth parameters are simple measures of signal complexity given by the second 
(mobility) and fourth (complexity) statistical moments of the power spectrum and quoting from [Hjorth, 
1970] they are ‘clinically useful tools for the quantitative description of an EEG’. 

Measures calculated on the frequency domain are: 
1. the spectral entropy, i.e. the entropy computed on the power spectrum of the EEG data 

[Rautte et al., 2005]. 
2. the spectral band power on frequency bands corresponding to brain waves delta, theta, 

alpha, beta and gamma as defined in classical EEG analysis 
3.  the frequency up to which 50% of the total spectral power is accumulated, referred to as 

median frequency. 
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Finally, we include in this list long range correlation measures that are used in the analysis of non-
stationary time series, mainly in finance and climate. The Hurst exponent [Dangel et al., 1999; 
Nurujjaman et al., 2007] and the Detrended Fluctuation Analysis (DFA) [Peng et al., 1995] are 
measures for estimating the extent of long correlations in processes and characterize non-stationary 
time series with regard to their self-similarity. For each of the two approaches we derive three 
measures from the graph of a variance-like quantity vs the time window length, the slope estimate, the 
error of the linear fit that gives the slope estimate, and the cumulative relative change of the fit error 
when increasing the window for fitting. 

Table 3. Measures based on linear and nonlinear modelling  listed as in Table 1. 
Symbol Description # 

1 2dAR ( , )x m m  Difference in MSE of AR at orders m=0,5,10 2 

1 2dloc ( , , )x m m K  Same as above for local-AR and K=20,40 4 
dlocAR ( , )x m K  Difference local-AR and AR, m=5,10, K=20,40 4 

 
The third class of measures given in Table 3 contains measures derived from modelling. Linear 

autoregressive models (AR) and local-linear models (local-AR) of varying orders were fitted to the 
original EEG time series and the relative change of goodness-of-fit between them was computed. The 
goodness-of-fit criterion was the mean squared error (MSE) and the selected orders were m=0, 5, 10 
with K=20 and 40 neighbours for the local linear models. The measures are given by the relative 
change of MSE when going from one type of model to another (either from linear to non-linear of 
same order or from small order to higher order) [Nielsen and Madsen, 2001]. Note that the use of m=0 
here is in order to facilitate the presentation of measures, i.e. the change of MSE for AR from order 0 
to 5 is actually the MSE for AR of order 5. 

2.3. Measures on the feature time series  
Basic analysis tools that account for the oscillations in the EEG signal are the Fourier, wavelet and, 

recently, empirical mode decomposition. An alternative new approach along these lines that we first 
introduced in [Kugiumtzis et al., 2006] is to extract directly features from each oscillation of the EEG 
signal and form feature time series. Seven time series of features are extracted from 1{ }N

t tx =  that are 
listed and denoted in Table 4.  

Table 4. Feature time series extracted from the EEG oscillating signal 1{ }N
t tx = . 

Time series Description 
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1

n
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1
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Regarding the turning points (local maxima and minima), a sample of the EEG time series is 
identified as local maximum (minimum) if it is the largest (smallest) of the samples in a window of 15 
samples centered on this sample. An earlier study in [Kugiumtzis et al., 2006] showed that smaller 
windows gave similar results. The four first features in Table 4 determine the basic form of an 
oscillation in terms of magnitude and time though in EEG the lines connecting the turning points may 
not be smooth and contain glitches. The fifth feature of the difference of successive turning points is 
included in order to register information about the range of the oscillation and to account for small 
drifts in the oscillating time series. The inter-spike intervals (defined in two ways to treat negative 
values in the last two lines of Table 4) characterize the oscillations in a different way. Note that the 
name does not refer directly to the epileptic spikes in EEG. An inter-spike interval (ISI) is defined as 
the time needed for the sum of the time series values to reach a given threshold [Sauer, 1994]. A series 
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of consecutive inter-spike interval times is obtained with a threshold determined by the mean 
oscillation time of the time series and the mean of its values. 

The measures estimated on the seven time series are listed in Table 5, grouped as for the measures 
on the oscillating EEG time series. We include also a group of simple statistics of all 7 feature time 
series, namely the median and inter-quartile range (these were found to be more robust measures of 
central tendency and variability than the mean and variance or standard deviation, respectively). We 
select only few of the measures on the oscillating time series that we expect to have robust estimates 
for due to the severely reduced length of the feature time series. For the same reason, smaller 
parameter values are used. As correlation measures, we use only the Pearson autocorrelation but 
include the cross-correlation as well as the cumulative cross-correlation of the four features that 
capture the basic form of the oscillation. We use the algorithmic complexity as a complexity measure, 
the approximate entropy as an entropy measure and the FNN as a dimension measure. The modeling-
based measures are as for the oscillating time series but for smaller embedding dimension m and 
number of neighbors K. Including the different parameter values the total number of measures on 
oscillating and feature time series is 284. 

Table 5. Measures on the seven feature time series, where w denotes any of them. The number of measures 
derived for different parameter values and on different feature time series is explained in the third column. 
Symbol Description  # 

Simple Statistics 
m(w) median of { } 1

n
i iw

=
                                                      1x7 

IQR(w) inter-quartile range of { } 1

n
i iw

=
                                       1x7 

Correlation 
P ( )wr τ  (Pearson) autocorrelation for 1,2,3τ =           3x7 

P (3)wCr  Cumulative autocorrelation for lag 3             1x7 

1 2, ( )w wc τ  Cross-correlation for τ =0,1,2,3, only for max min osc max,min, , ,i i i ix x t t   4x3x4 

1 2, (3)w wCc  Cumulative cross-correlation for lag 3, only for max min osc max,min, , ,i i i ix x t t     3x4 
Complexity / Entropy / Dimension 

pACw  Algorithmic complexity equiprobable binning using 2 bins                    1x7 

AE ( , )w r m  Approximate entropy for r=0.2 and m=1,2        2x7 
FNNw(m) Percentage of false nearest neighbors, m=1,2                  2x7 

Modeling 
1 2dAR ( , )w m m  Difference in MSE of AR, m=0,1,2               2x7 

1 2dloc ( , , )w m m K  Same as above for local-AR and K=5,10       4x7 
dlocAR ( , )w m K  Difference local-AR - AR, m=1,2 and K=5,10    4x7 

 

2.4. Evaluation of measures  
The estimation of each measure on all consecutive segments over a period of at least 3 h gives the 

measure profile (a series of at least 360 values for each measure). An example of the profile of a 
simple and more involved measure (the median of the local maxima ( )maxm ix  and the largest 

Lyapunov exponent (5, 20)yλ , respectively) estimated on the EEG signal from a temporal and a central 
channel is shown in Fig. 2a and b. It appears that better discrimination of late preictal state from earlier 
preictal states can be established with the simple measure of ( )maxm ix . 

In [Kugiumtzis et al. 2006] the discriminating power of some of the listed measures was assessed 
by means of statistical comparison of two groups (t-test, nonparametric tests) regarding smaller preictal 
periods. Here, we consider larger periods that span 30 min and resulting in 60 samples in each group 
giving a sufficient estimate of the distribution of the measure for this period (preictal state). Thus the 
comparison can extent to the whole distribution rather than the mean or median, as shown in Fig. 2c, 
and we consider for this the receiver operating characteristic curve (ROC) [Armitage et al., 2002]. The 
ROC curve gives the level of overlapping or distance of two sample distributions, so that the closer to 
the diagonal the ROC curve lies the more the two distributions overlap (see Fig. 2d). To quantify the 
level of overlapping we use here the area under the ROC curve (AUC), so that AUC values close to 
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one suggest disjoint distributions, and for our case clear discrimination of the two preictal states, with 
regard to the measure under study. We verified that relative entropy [Cover and Thomas, 1991] 
quantifies similarly with AUC the level of overlapping (distance) of the two distributions and we 
therefore used only AUC in the evaluation procedure. 

We note that ROC analysis requires that the samples in each group are independent. However, 
there may be the case that significant correlations within a preictal state are found, probably due to 
trends within the period, such as the upward trend in the late preictal state in Fig. 2a. Since such a trend 
is itself evidence in favour of discrimination, we overlook the independence assumption in the 
computation of ROC and AUC.  
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Figure 2. Profiles of the median of local maxima in (a) and the largest Lyapunov exponent in (b) for a temporal 

and a central channel (upper and lower panel). The AUC values displayed at each panel regard the 
comparison of the periods in first and second light shaded areas to the third period of shaded area 
ending at seizure onset. The histogram of the samples in the second and third period in the upper 
panel of (a) are superimposed in (c) and the ROC curve and AUC area for these two periods are 
drawn in (d).  

3. Results 
We consider groups of measure values at different periods of 30 min long (60 values) that regard 

different preictal stages. As the interest is in discriminating the late preictal state from earlier preictal 
states, we compare by means of AUC the group of the late preictal state in the period [-30,0] (with 
reference to the seizure onset at time 0 as identified by a clinician), with other groups at earlier periods 
of the same length. For each group comparison, the AUC of a measure is computed for every channel 
and the average AUC is the score of the measure.  

The 10 measures scoring highest in terms of the average AUC for the comparison of groups in the 
periods [-30,0] and [-190,-160] are listed for all 7 seizure episodes in Table 6. It can be seen that there 
is large variability of the AUC scores across measures as well as across seizure episodes. While it is 
somehow expected that no measure singles out, it appears that some measures occur often among the 
highest ranked measures for a range of seizure episodes, such as the autocorrelation at lag 10 
(Spearman, Kendall and Pearson) and the median of inter-spike intervals. Interestingly, more advanced 
methods, such as chaos-related measures and modeling-based measures are not included among the 
best. The high AUC values of a number of measures would suggest that discrimination is possible 
between these two preictal stages in all of the 7 seizure episodes. However, among 284 measures it is 
plausible that some measures score high in AUC. To investigate this further, we repeated the same 
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AUC calculations using the same late preictal state and other earlier preictal states and found that there 
was some variation in the AUC scores of the measures but the same simple measures performed 
similarly.  

We computed the grand average of AUC from comparisons of the late preictal stage to 5 
consecutive stages of 30 min long, starting at 190 min prior to seizure onset and ending at 40 min prior 
to seizure onset. The results from the ranking of the measures are shown in Table 7. Though the 
ranking of the measures is not the same as for a single comparison (compare Table 6 to Table 7) we 
note that the same simple measures occur consistently among the 10 best. Again the highest AUC 
scores suggest significant discrimination of the late preictal state from the earlier preictal record. 

Table 6. The 10 measures ranked highest in terms of their AUC values from period [-30,0] and [-190,-160], 
where seizure onset is at time 0. For each of the 7 seizure episodes, the measure is given together with its 

AUC value.  
 A B C D 

rank measure AUC measure AUC measure AUC measure AUC 
1 absm( )iz  0.743 yHjC  0.803 maxm( )ix  0.827 absm( )iz  0.919

2 K (10)yr  0.735 E ( )y β  0.757 minm( )ix  0.815 maxm( )ix  0.890

3 S (10)yr  0.734 dlocAR (5, 20)x  0.755 E ( )y γ  0.810 minm( )ix  0.889

4 maxIQR( )ix  0.721 dlocAR (10, 20)x 0.750 yHjM  0.801 max,minm( )iδ  0.889

5 P (10)yr  0.720 E ( )y γ  0.749 max,minm( )iδ     0.726 minIQR( )ix  0.856

6 minIQR( )ix  0.719 dlocAR (5, 40)x  0.747 absm( )iz  0.715 maxIQR( )ix  0.853

7 S (5)yr  0.704 dlocAR (10, 40)x 0.737 dACy  0.699 absIQR( )iz  0.845

8 K (5)yr  0.703 E ( )y θ  0.711 pACx  0.697 max,minIQR( )iδ  0.833

9 P (5)yr  0.694 S (5)yr  0.705 dloc (5,10,20)x 0.696 dAR (0,5)x  0.812

10 (5)yI  0.693 K (5)yr  0.704 mf  0.694 dlocAR (10, 40)x  0.781

 
 E F G 

ran
k 

measure AUC measure AUC measure AUC 

1 yDFC  0.850 eτ  0.779 eτ  0.972 

2 S (10)yr  0.847 S (10)yr  0.677 yHjC  0.920 

3 K (10)yr  0.846 K (10)yr  0.675 K (30)yr  0.914 

4 P (10)yr  0.843 P (10)yr  0.652 S (30)yr  0.913 

5 yHeC  0.816 (10)yI  0.646 S (5)yr  0.913 

6 E ( )y θ  0.815 (10)ydI  0.645 K (5)yr  0.913 

7 S (20)yr  0.802 S (40)yCr  0.636 P (30)yr  0.911 

8 K (20)yr  0.802 max,minIQR( )it 0.633 P (5)yr  0.899 

9 P (20)yr  0.794 K (40)yCr  0.633 E ( )y δ  0.886 

10 E ( )y α  0.778 S
max( )yCr τ  0.629 mf  0.884 
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Table 7. As in Table 6 but for the grand average of AUC from 5 comparisons of the period [-30,0] to periods     
[-190,-160], [-160,-130], [-130,-100], [-100,-70] and [-70,-40].  

 A B C D 
rank measure AUC measure AUC measure AUC measure AUC

1 absm( )iz  0.775 E ( )y β  0.683 E ( )y γ  0.774 eτ  0.822
2 minIQR( )ix  0.739 yHjC  0.676 dlocAR (10, 20)x 0.742 absm( )iz  0.764
3 maxIQR( )ix  0.735 E ( )y γ  0.666 yHjM  0.715 minm( )ix  0.734
4 max,minm( )iδ  0.735 dlocAR (10, 40)x 0.663 mf  0.704 max,minm( )iδ  0.734
5 absIQR( )iz  0.732 (5, 40)yλ  0.663 dlocAR (5, 20)x 0.700 maxm( )ix  0.732
6 maxm( )ix  0.731 dlocAR (5, 40)x 0.657 maxm( )ix  0.693 absIQR( )iz  0.714
7 minm( )ix  0.719 pACx  0.652 minm( )ix  0.683 maxIQR( )ix  0.713
8 max,minIQR( )iδ  0.692 dAC y        0.649 dloc (5,10,20)x 0.677 minIQR( )ix  0.711
9 cutAE ( , )

z
r m  0.673 dlocAR (5, 20)x 0.646 E ( )y β  0.668 dAR (0,5)x  0.700

10 K (10)yr  0.661 dlocAR (10, 20)x 0.645 E ( )y δ  0.661 K (5)yr  0.698
 
 

 E F G 
rank measure AUC measure AUC measure AUC 

1 yDFC  0.873 eτ  0.786 yHjC  0.939 
2 K (20)yr  0.864 E ( )y γ  0.652 K (30)yr  0.914 
3 S (20)yr  0.864 minm( )ix  0.65 S (30)yr  0.914 
4 P (20)yr  0.855 max,minm( )iδ 0.647 P (30)yr  0.908 
5 yHeC  0.829 S (40)yCr  0.644 S (5)yr  0.904 
6 dAC y  0.814 max min,

(1)
x x

c  0.644 K (5)yr  0.904 
7 pACx  0.814 K (40)yCr  0.642 P (5)yr  0.891 
8 E ( )y θ  0.814 (40)ydCI 0.641 E ( )y α  0.874 
9 P (10)yr  0.806 maxm( )ix  0.638 yDFS  0.874 

10 S (10)yr  0.803 yHjM  0.638 max,minIQR( )it  0.868 
 

4. Discussion and conclusion 
 
EEG is a highly complex and dynamic signal. It underlies circadian and ultradian rhythms and 

changes due to changes in arousal, e.g. sleep changes the characteristics of the EEG, so that EEG is 
prone to artifacts. The EEG signals depend on the recording setup. Different recording montages will 
give different spatial filtering and hence different information in the EEG [Nunez, 1995]. The reported 
findings here are based on EEG with a calculated average reference. It is expected that changing the 
spatial filtering parameters will give a different result. 

A number of earlier studies were optimistic about seizure prediction based on the profile of a 
measure estimated on segments of the EEG signal, often involving substantial computational 
complexity. Later studies using larger EEG databases questioned the predictive performance of these 
same measures and their feasibility in clinical practice. These studies were mostly concentrated on 
specific measures, such as correlation dimension [Aschenbrenner-Scheibe et al., 2003; Harrison et al., 
2005], accumulated energy [Maiwald et al. 2004] and Lyapunov exponents [Lai et al., 2003]. Our 
study is rather comprehensive with respect to the measures of scalar time series analysis applied to 
EEG, and all measures are tested on the same EEG data base, that admittedly is of limited size 
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including only 7 preictal records. The study uses only preictal records from scalp EEG without artifact 
rejection to assimilate clinical practice conditions. The performance of the measures is evaluated in 
terms of their ability to discriminate different periods of the preictal record, most importantly the late 
preictal stage (30 min before seizure onset) to earlier preictal stages of the same duration. 

On top of the measures earlier used in EEG analysis, we have included other measures that have 
not been applied to EEG, such as the Spearman and Kendall autocorrelation and the detrended 
fluctuation analysis, or have been used in EEG analysis very recently, such as the Hurst exponent in 
[Nurujjaman et al., 2007]. A large proportion of the studied measures are new measures introduced in 
order to capture different characteristics of the EEG signal and may therefore be useful is seizure 
prediction, such as the cumulative autocorrelation measures and the measure of deviation of the mutual 
information from the “Gaussian” mutual information ydI . Moreover, many new measures are proposed 
that are either simple statistics of oscillating features or other more advanced measures on the feature 
time series. 

The estimation of all these measures and the comparison of their discriminating power using AUC 
revealed some interesting points. First, it is confirmed that the level of discrimination of preictal stages 
depends on physiological conditions. Though we accounted for the seizure type and used records only 
for generalized tonic clonic seizures, the discrimination performance of the measures varied with the 
epileptic episode and channel, suggesting that the physiological activity and brain area connectivity 
varies with the seizure. In opposition to its name, general seizures are not general. Also there is a 
common notion that the seizures start at different locations even though denoted as primarily 
generalized seizures. It have been suggested that it is a difference between night and day with start 
either temporal or frontal in the brain. This is probably oversimplified, but stresses the complexity in 
the evolution and spreading of epileptic activity in the preictal period. 

The results do not show clear discrimination of the late preictal state (last 30min) from earlier 
periods (from about 3h to 40 min prior to seizure onset) as no measure score consistently high in all 
seizure episodes, but different measures achieved large AUC values at different seizure episodes. 
However, overall many measures find significant discrimination of the late preictal state from many 
earlier preictal stages suggesting that the seizure prediction is at cases possible. This needs further 
investigation including more episodes as well as records going further backwards in time from the 
seizure onset into the interictal state.  

Besides the limitations of this study in terms of data resources, it is rather clear that simple 
measures can discriminate preictal stages as well as or even better than measures that are more 
conceptually advanced and computationally intensive. This was shown already in [Kugiumtzis and 
Larsson, 2000] for some few measures in small preictal scalp EEG records and was later reported in 
other works (see [Mormann et al., 2007] for a comprehensive review). Among the highest ranked 
measures are the median of oscillating features, in particular the inter-spike intervals and local minima 
and maxima. Even for the seizure episodes they were not among the first best measures, their AUC 
values were not long behind the first best. These measures are not dependent on the time series length 
and could be computed on smaller segments, down to a couple of seconds, similarly to the short term 
Fourier transform. Moreover, they are computationally very efficient and can potentially be used in on-
line brain monitoring. Some traditional measures on EEG, i.e. the Hjorth parameters and the energy in 
specific bands, have scored very high in some cases, but very low in other cases. Correlation measures, 
such as the Spearman autocorrelation at lag 10 and the decorrelation time, gave also high scores, but 
they also lack consistent high score in all seizure episodes. It is noted that many measures detecting 
subtle characteristics in the signal, such as the third order joint moments, the deviation of the mutual 
information from “Gaussian” mutual information, cross-correlation of oscillating features and models 
on oscillating features, performed relatively poorly and the same holds for some measures based on 
nonlinear dynamics theory.  

At this stage, many measures are used but on relatively few preictal EEG records, so the results 
cannot be taken as conclusive. However, it is in the intension of the authors to extent this study and 
include more EEG preictal records, also under different conditions, i.e. EEG data after removing 
artefacts, intracranial  records, more seizure episodes and other types of seizures.    
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