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Abstract. As the reconstruction of images in electrical impedance tomography (EIT) is sensitive to noise, low signal
level and small  errors  in measured data  result  into large  errors in final  images. In order to optimize the  signal
acquisition from any region, the measurement should possess the highest sensitivity and selectivity in that region.
This study was conducted to illustrate measurement properties of various generally applied measurement strategies in
EIT. Computer models were utilized in simulating the sensitivity distributions of neighboring, cross, opposite and
adaptive methods in simplified volume conductors. Animation sequences of visualized sensitivity fields were created
for each method. Highest sensitivity values were obtained with the cross and opposite methods, while neighboring
was the least sensitive, when investigating a single measurement. Maximum proportional selectivities in the center of
a 2D model were 100, 94, 88 and 62 %, respectively, as compared between the neighboring, cross, opposite and
adaptive methods. In 3D, the corresponding values were 100, 55, 50 and 7.6 %. Regions of negative sensitivity were
detected, which in part complicates the reconstruction. Nevertheless, studying sensitivity distributions may improve
the basic understanding of the technique and improve the outcome of EIT in the future.
Keywords: Electrical Impedance Tomography; Sensitivity Distribution; Measurement Properties; Modelling; Lead Field; Computer Simulation;
Electrode Configuration

1. Introduction
Electrical impedance tomography (EIT) aims to produce static or dynamic images related to the conductivity

distribution of the measured region. The advantages of EIT as compared to conventional imaging techniques such as
computed tomography or magnetic resonance imaging are: It is considered safe by merit of the small alternating
currents required; it can be used as a long-term, continuous imaging method; and the system can be constructed at
low cost and in portable size [Zhu et al., 1993]. The range of EIT possible applications in medicine is wide. Brown
[1990] reports that potential medical applications of the technique include the following of gastric  function, lung
ventilation imaging, tissue temperature imaging, lung water imaging, blood vessel distension, pelvic congestion, lung
perfusion and cardiopulmonary function, cerebral blood flow, thoracic fluid determination, cell death imaging in
radiotherapy, following of bladder filling, gastric movement imaging and tumor imaging. More recently, promising
results have been obtained in neurological EIT, where applications in epilepsy, stroke and neuronal depolarization are
encouraging [Holder, 2005]. However, a clinical breakthrough of EIT into routine use is still ahead. At present, its
major disadvantage is the poor spatial resolution, which decreases especially in deeper regions of the medium.
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The  ability  of  EIT  to  show  changes  in  conductivity  is  superior  to  its  ability  to  show absolute  values  of  the
conductivity, therefore often producing dynamic images.

The spatial contribution of a conductivity distribution to an impedance measurement depends on the current
injection and the associated voltage measurement configuration. For this, a number of data acquisition strategies exist
for EIT. In ideal conditions, however, the only required data is the independent tetrapolar data associated with the
number of electrodes used. With these data, all other excitation/measurement combinations may be derived off-line
[Malmivuo and Plonsey 1995; Kauppinen et al., 1999]. Data acquisition of such data is relatively simple, and no
special excitation patterns (e.g., multisite adaptive ones) are needed. Yet, as reconstruction techniques generating EIT
images are sensitive to noise, small errors in the measured data translate into large errors in the resulting images,
hindering the use of independent data. In order to optimize the signal acquisition from any region, the measurement
should possess the highest detection capacity in that region.

Contribution  from  any  region  to  the  measurement  is  not  self-evident;  the  sensitivity  distribution  of  the
measurement  may  also  contain negative  values  [Geselowitz  1971;  Kauppinen  et  al.,  1999],  which  in part  may
complicate  the  interpretation  of  measured  data.  This  has  proven  to  be  especially  complicated  in  impedance
cardiography (ICG), where typically a single time-domain signal is acquired, and physiological variables are derived
from that waveform [Kauppinen 1999].

The concept of sensitivity distribution, or merely inverted sensitivity matrix, has been used in the EIT inverse
solution. The sensitivity matrix contains a sensitivity distribution in each row for each measurement  setup used.
However, according to our knowledge, the visualizations of these data have not been published by other groups
[Kauppinen et al., 2005]. Quite the contrary, illustrations showing only the current distribution, that may even give an
erroneous impression of what the EIT actually measures, have been published [e.g., Malmivuo and Plonsey 1995;
Liston et al., 2002; Grimnes and Martinsen, 2000].

We conducted an illustrative computer model study to investigate the form of sensitivity distributions in various
EIT measurement strategies by applying the lead field theoretical approach. The purpose of the simulation study
reported in this paper is to gain further understanding of the measurement properties of EIT measurement and hence
aid in understanding the methodology. Common EIT measurement methods were  simulated and visualized with
homogeneous 2D and 3D radially symmetrical computer models. Additional experiments were conducted with a 2D
model mimicking the anatomy of the human head.

2. Material and Methods

2.1. Sensitivity Distribution
Sensitivity distribution of an impedance measurement gives a relation between the measured impedance Z (and

change in it) caused by a given conductivity distribution (and its change). It describes how effectively each region is
contributing to the measured impedance signal. If conductivity change is not involved, the measured impedance is
obtained with

Z =  ∫
v

1

σ
JLE • JLI dv (1)

where JLE and JLI obtained with reciprocal energization, are the current density fields (i.e., impedance lead fields)
associated with the current injection and voltage measurement leads [Geselowitz, 1971; Malmivuo  and  Plonsey,
1995]. This equation gives the contribution from each volume to the total Z, and the dot product of the two fields
expresses the sensitivity to conductivity changes throughout the volume conductor. Effects of conductivity changes
on measured impedance can be calculated by ΔZ = Z(t2) - Z(t1), where the time instants t1 and t2 refer to situations
before and after a conductivity change, with the assumption that the changes in the lead fields are negligible due to
the small conductivity change. As the resulting scalar field may possess positive and negative values depending on
the orientation of the two lead fields, the measured impedance may either increase, decrease or be entirely unaffected
in consequence of a conductivity change in a particular region.

Fig.  1  illustrates  the  formation  of  the  measurement  sensitivity  of  tetrapolar  impedance  measurement  in  a
homogeneous  cylinder  schematically.  Electrode  distances  affect  whether  superficial  or  deep  regions  are  more
efficiently sampled and the regions of negative sensitivity (as depicted by Eq. 1) lay near the electrodes, where the
two lead fields have antiparallel components.
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To analyze the capacity of an EIT measurement to detect conductivity and its changes in the center region, the
sensitivity in this region of interest may be evaluated. Another parameter describing the measurement is selectivity,
which gives the proportional value of the sensitivity in the target region against the total sensitivity over the medium.
The difficulty is that an ideal measurement should have both high sensitivity and high selectivity simultaneously,
which  would  require  lead  fields  having  null  values  anywhere  else  than  in  the  target  region.  This,  however,  is
practically impossible to achieve for any surface electrode system.

Figure 1.  Simplified sensitivity  distribution of  a four-electrode impedance measurement  applied to a  uniform conductive
cylinder. (a) The lead field produced by the current excitation electrodes (Ir refers to reciprocal current injection). (b) The field
which would be produced if  the current were driven through voltage measurement electrodes. (c)  Superimposed fields of the
previous two lead fields. (d) Principled presentation of the sensitivity of the measurement setup in a few locations.

2.2. EIT Measurement Strategies
Several EIT data collection strategies, i.e., collections of current injection and voltage measurement pairs, have

been published. Here, animated illustrations of the principle of four strategies addressed in [Malmivuo and Plonsey,
1995] are given. Black electrode locations are used for current delivery and red ones for voltage detection in the
following animations.

Neighboring Method
In the neighboring method [Brown and Segar, 1987], the current is applied through neighboring electrodes, and

the voltage measured successively from all other adjacent electrode pairs. All current electrode pairs will be used
sequentially, producing 16 current injection patterns when 16 electrodes are used.

Animations. Neighboring method

1) Current injection

2) Voltage measurement

3) Neighboring method

The number of tetrapolar independent measurements for the method is

n =  16(current) •13(voltage)
2  = 104 (2)

Cross Method
The cross method aims to produce more homogeneous fields than the neighboring method. This is obtained by

using more distant electrodes instead of the adjacent ones [Hua et al., 1987].
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Animations. Cross method

4) Current injection

5) Voltage measurement

6) Cross method
The number of tetrapolar independent measurements is

n = 7(current) •13(voltage) = 91 (3)

Opposite Method
In the opposite method, the current is injected through two diametrically opposed electrodes. This evidently

should produce more field strength in the deeper regions of the medium.

Animations. Opposite method

7) Current injection

8) Voltage measurement

9) Opposite method

The number of tetrapolar independent measurements is

n = 8(current) •13(voltage) = 104 (4)

Adaptive Method
The adaptive method enables simultaneous current flow from all the electrodes. The idea is to optimize the

current patterns in terms of maximizing the resulted voltage measurements for desired regions. Several methods have
been introduced to derive these optimal patterns [Holder, 2005]. Here, a basic trigonometric current injection is used,
which should produce homogeneous distribution in the homogeneous radially symmetric medium [see additional
explanation in e.g., Malmivuo and Plonsey, 1995].

Animations. Adaptive method

10) (trigonometric) Current injection

11) Voltage measurement

12) Adaptive method (trigonometric)

The number of tetrapolar independent measurements with the trigonometric current pattern (note, that  several
other patterns may be used with the adaptive method, depending on the EIT algorithm and instrumentation applied) is

n = 16(current) •15(voltage) / 2 = 120 (5)

2.3. FDM Models
Methods to  construct and solve  accurate  volume conductor computer  models based on the  finite  difference

method  (FDM) have  previously been developed  and  validated  [Kauppinen et  al.,  1999b].  The  VCMT software
package utilized affords  the construction of  a  model  from segmented voxel anatomy without  limitations  on the
number of different tissue types and their distribution. The simulation result is provided in each discrete element in
the model, not  only at  the  boundaries of  inhomogeneities as in BEM or FEM often applied in EIT. The major
drawback is the inefficiency of the solver routine, which is based on an iterative over-relaxation technique.

For calculating the lead fields of 16 electrode EIT setups in a simple case illustrating the basic form of the
sensitivity distribution, two homogeneous models were applied:

a)     2D slice (2 mm height), diameter 249 mm. Number of computational nodes 98 528, element size 1*1*1 mm
b)     3D cylinder, height 300 mm, diameter 249 mm. Number of nodes 88 896, element size 3 * 3 * 20 mm.
An additional model (2D) was derived from a realistic geometry model representing major tissues of the human

head.
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2.4. Simulations and Analyses
The  number  of  electrodes  was  16  in  the  present  study,  which  allows  195  (15*13)  tetrapolar  impedance

measurement configurations, including the reciprocal measurements. For each model, 15 simulations were run to
obtain a lead field of each electrode against a common reference. This set of the lead fields is the only simulation data
required.

Figure 2. Original set of 15 simulated lead fields. Using these data, new lead fields may be calculated directly  by linear
combination, e.g., lead field between the electrode locations 1 and 10 is obtained by subtracting lead field ref→1 from the lead
field ref→10 (as shown by the red arrow).

Deriving any EIT excitation/measurement combination with these pre-calculated lead fields is a simple non-
iterative calculation since the system is assumed to be linear. E.g., a lead field between the electrode locations 1 and
10 as shown in Fig. 2 may be obtained by subtracting lead field ref->10 from the ref->1. The resulting measurement
sensitivity distribution is given by Eq. 1 can, therefore, be calculated without time-consuming simulations for each
measurement combination studied.

The studied acquisition methods were neighboring, opposite, cross and adaptive ones. Due to the symmetry and
homogeneity of the medium (2D slice and 3D cylinder), only limited number of measurement combinations were
derived and analyzed: The sensitivity pattern is similar, only rotated, in other combinations not calculated.

Sensitivity and proportional selectivity in the center of the models were obtained and compared between the
methods.

Additional experiments were conducted on a single slice realistic model of the head. These experiments were
only preliminary to visualize the effects of more realistic geometry and conductivity distribution on EIT sensitivity
fields.

3. Results
Calculated maximum sensitivities and selectivities in the  center  of  the  model are given in Table  1 for each

method. For the reason of comparison, the values are given in percentages as compared against each method so that
the maximum value for a parameter is 100 %. Also, the simulated basal Z for the most responsive measurements are
given. The number of processed sensitivity distributions was altogether 477.

Table 1. Proportional sensitivities and selectivities in the center for each method evaluated between the EIT measurement
strategies with 2D and 3D models.

Model Method Max. sensitivity [%]
(in the center)

Max. selectivity [%]
(center vs rest of the model)

Basal Z [Ohm]

2D

Neighboring     4,02 100     56
Opposite 100      94,20 4800   

Cross   99,60   87,90 4700   
Adaptive   85,60   61,70 7300   

3D

Neighboring     3,98 100            0,23
Opposite 100      55,30  32

Cross   98,90   49,60  31
Adaptive   84,50     7,60 120 
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As the sensitivity is evaluated at a single pixel/voxel in the center of the model, high values are related almost
linearly to high basal Z readings. Selectivity, on the other hand, gains higher values when the contribution from the
other regions is reduced. This, at least in the homogeneous models studied, tends to result in smaller basal Z values as
seen in Table 1.

Animations 13 through 16 represent calculated sensitivity maps obtained with the 2D model for all the methods
studied. Other measurements not shown are redundant ones in terms of the sensitivity maps in homogeneous circular
models. The field is only rotated and/or mirrored due to the homogeneity and symmetry of the model. Black electrode
locations are used for current delivery and red ones for voltage detection. The sensitivity is shown in the color bar,
positive values indicated with brighter, negative with a darker color. Scaling of the colormap is kept the same within
each animation; null sensitivity lines are shown with black lines.

Animations. Adaptive method

13) Neighboring method; sensitivity distributions

14) Opposite method; sensitivity distributions

15) Cross method; sensitivity distributions

16) Adaptive method; sensitivity distributions (trigonometric current feed)

Relatively large regions of  negative sensitivity can be seen in all animations. Example individual  sensitivity
distributions having regions of both positive and negative sensitivities simultaneously are given in Fig. 3 for each
method. Sensitivity distributions being the most sensitive to detect the center region for each of the studied methods
are illustrated in Fig. 4, the most selective configurations in Fig. 5.

Figure  3.  Selected sensitivity  distributions  showing  regions of  positive  and negative  sensitivities  for  all  the  methods as
simulated in the 2D homogeneous model.

Figure 4. The most sensitive configurations to detect the center region of the model.
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Figure 5. Most selective configurations for each method.

Figure  6 depicts the  potential  field  (note,  not  sensitivity  distribution)  due to  trigonometric  current  injection
pattern of the adaptive method in each of the models used in the study. For the 2D disk model, the field is highly
homogeneous as expected, whereas in the 3D case, the field spreads more causing inhomogeneous current field.
When  including  the  realistic  2D head  boundary  and  inhomogeneities  within  the  head,  the  field  is  even  more
inhomogeneous as compared to the radially symmetrical cases. In Anim. 17 the trigonometric current injection is
rotated 360 degrees around the thorax.

Figure 6. Potential fields due to trigonometric current injection in different models used in the study.

Animation.

17) Adaptive method; current feed, rotated around the 2D head model

4. Discussion
The purpose of the study was to emphasize the importance of the sensitivity field and to demonstrate that the lead

field  approach  is  suitable  for  investigating  EIT.  Several  measurement  configurations  simulated  in  simplified
homogeneous cases were visualized and animated in respect to their measurement sensitivity distributions. Previous
work has applied the forward solution mainly in developing reconstruction algorithms, for  example Liston et al
derived sensitivity matrixes on multi shell models (Liston et al 2002). They, however, did not investigate the form of
the  sensitivity  field;  instead  they  visualized  the  current  field.  It  should  be  noted,  that  the  actual  measurement
sensitivity is not illustrated with the current field, but by the dot product field of the current injection and the voltage
measurement lead fields. In another study, sensitivity was investigated in a physical tank model (Jossinet and Kardous
1987). It was found, that sensitivity was often higher close to the electrodes, but no clear indication of negative
sensitivity was reported.

The anticipated results in our study revealed that often most of the measurement sensitivity is concentrated in
regions close to the surface and that a considerable region of negative sensitivity lay often near the electrodes. Close
to the electrodes the sensitivity field has large gradients, i.e., the high positive sensitivity (large contribution) may
change in a few millimeters too high negative sensitivity having an opposite contribution to the measured value.
Negative sensitivity as depicted by Eq. 1 is detected in regions where the two lead fields have opposite components.
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The neighboring method was the least sensitive in the center as compared to the others. However, its proportional
selectivity was the  best.  Actual  sensitivity value  might  not  always  be  as important  as the  selectivity.  The most
sensitive  (although  not  necessarily  the  most  selective  one  at  the  same  time)  method  may  be  used  when  the
approximate location of expected impedance change is known. Then the change in detected signal is the largest.
Whereas, when the relative contribution from certain region is more important than the signal level (when seeking the
location of the change), the most selective configuration yields more favourable results.

Between the opposite, cross and the adaptive methods the values did not vary largely. As expected, the adaptive
method  produced  the  most  homogeneous  sensitivity  throughout  the  model.  The  adaptive  current  injection  was
visualized separately (Fig. 6 and Anim. 17). For the 2D slice, the generated field is homogeneous, whereas in the 3D
model the currents are not strictly confined to a cross section, but spread in 3D. In the 2D head model the internal
inhomogeneities and the shape of the outer boundary clearly modify the field making it more inhomogeneous. Also,
rotating the current feed around the head modifies the resulted field. For the adaptive method, no optimization of the
current injection patterns was used, which would have been likely to increase the sensitivity and selectivity of the
measurement.

A further  application of  EIT could evolve in providing regional  conductivity for use  in solving the inverse
problem of ECG (Newell 1985) or EEG (Goncalves et al. 2000). Regional conductivity and its changes detected by
impedance might provide an initial estimation whether the subject is suffering from brain ischemia or hemorrhage,
which  require  the  use  of  either  thrombolytic  or  antithrombotic  drugs  having  quite  the  opposite  actions.  The
measurement could quite simply be integrated into a portable emergency EEG device and used simultaneously with
the EEG recording by the paramedics prior to entering a hospital. This application is presently under investigation by
our group.

The results of the present study are only illustrative and the purpose was to demonstrate the application of the
lead field approach in analyzing the  EIT measurements.  The models  used were  therefore  simple,  linear  and no
realistic electrode model was used.

Based on our results, no obvious indication of the preference of any acquisition method may be given. In reality,
the fields are much more complex than in our simplified linear cases. An indication of complexity was obtained with
the 2D realistic model, showing clear deviations from the symmetrical models. Noise level and the implementation of
EIT instrumentation and inverse solution have their  own impact and restrictions on the data acquisition method.
However, the analysis can be extended to more sophisticated models, with additional focus on the derivation of
optimal excitation and measurement configurations in realistic geometry and conductivity distributions and in the
existence of noise.

As  the  sensitivity  is  low in  deeper regions  resulting  in low resolution,  it  is  feasible  to  seek  measurement
combinations that would improve the method in that aspect. Employing multiple measurements with different and
known sensitivities to the relevant region may convey useful information related to some specific event or region
undetectable  by  conventional  measurement  strategies.  The  human  tissues  are  not  strictly  conductive  and  the
assumption of the linearity does not hold completely. Whether one should concentrate on finding the most selective or
sensitive  measurements  in  the  inner  regions  by  off-line  derivation  from  independent  data  or  by  actual  direct
measurements utilizing more than four electrodes at a time, remains to be investigated.
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