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Abstract. This manuscript describes and illustrates techniques that can be used to simplify and increase the reliability
of the solution to the bioelectromagnetic inverse problem. These  steps simplify the head model, the source model and
the scalp maps to be localized. The motivation of these techniques is physiological rather than mathematical and they
are meant to convert electrical neuroimaging in a reliable, practical tool for brain researchers. The  simplified head
model (SYSMAC) considers the individual subject MRI while keeping the computational simplicity of the spherical
approximation. The inverse solution can be displayed onto the original anatomical image possibilitating the analysis
of patients. We then describe ELECTRA source model based on the fact that the EEG is generated exclusively by
irrotational sources. This constraint leads to a better posed inverse problem reducing threefold the unknowns. Finally,
a  multivariate  space time-frequency decomposition (MaSTiF)  of  the  EEG is  described to  isolate scalp maps of
interest in the time-frequency domain. By using a time-frequency decomposition, simultaneous processes occurring at
different frequencies are localized separately, decreasing the number of simultaneously active sources. Consequently,
the reliability of the inverse solution result is enhanced and the number of ghost sources diminished. These techniques
are illustrated in the analysis of sleep spindles, a typical example of brain oscillatory phenomena.
Keywords: Inverse problem, ELECTRA, source localization, time-frequency, neural oscillations, brain rhythms.

1. Introduction
The localization of  the  generators of  electric or  magnetic activity recorded at/near the  scalp, have  been for

decades  one  of  the  main  goals  of  brain  researchers.  Not  even  the  recent  development  of  functional  imaging
techniques (fMRI, PET) has reduced the importance of this problem. This is due not only to the indisputable high
temporal resolution of bioelectromagnetic techniques but also because of clinical reasons. The localization of some
brain disorders such as the epilepsy is not always reflected in anatomical or functional images. Functional imaging
techniques measure physical magnitudes that are weakly related to electrical activity within the brain. Furthermore,
almost all normal mental processes are known to occur within 50-500 milliseconds after the presentation of  the
stimuli. In this fast processing of  information many different brain structures are activated serially or in parallel.
Some of these areas remain active only a few milliseconds which certainly impede their identification by means of
hemodynamic or metabolic image modalities. In addition the existence of a coherent oscillatory rhythmic activity
between different areas seems to be the basic principle of transmission of information in the brain. Such oscillatory
activity  cannot  be  detected  by functional  imaging techniques.   This  explains  why in  spite  of  the  mathematical
difficulties associated with the solution of the bioelectromagnetic inverse problem; it constitutes still a basic goal for
the researchers in the field.

The obstacles  to  solve  the  bioelectromagnetic  inverse  problem have been known for  more  than  150  years.
Helmholtz showed that the bioelectromagnetic inverse problem has no unique solution even for an infinite number of
noise-free measurements. Since in practice, the available number of EEG or MEG sensors is technically bounded, it
appears that any attempt to deduce the distribution of sources within the brain is doomed to failure. However, it is
feasible  to  obtain  estimates  for  the  electrical  activity  within  the  brain  from  electromagnetic  signals,  provided
sufficient a priori information is incorporated in the analysis and the level of detail demanded in the reconstruction is
in agreement with the sensitivity of the measurements, i.e., we cannot expect to reconstruct details at the neuronal
level from scalp recorded data.
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The goal of this paper is to describe and illustrate different techniques that can be used to simplify the solution to
the  bioelectromagnetic  inverse  problem while  increasing the  reliability of  the  obtained images.  The approaches
described here comprise steps to simplify the head model, the source model and the scalp maps to be localized. The
motivation of these simplified techniques is physiological rather than mathematical and they are meant to convert
electrical neuroimaging in a practical and reliable tool for brain researchers.

The manuscript is divided into a theoretical section and the application section. The theoretical section discusses
the basis of the techniques, afterward illustrated with the analysis of sleep spindle data. In particular, we include
within the theoretical section detailed description of several steps that can be used to simplify the solution, namely:

1) An efficient (simple and fast) algorithm (SYSMAC) to compute the lead field matrix needed for the source
localization problem.

2) Multivariate space-time frequency (MaSTiF) decomposition of the EEG to study the non-stationary spectral
components of the measured data as well as the determination of the sources associated to those components.

3)  The irrotational source model (ELECTRA).

The second part  of  the paper illustrates the  use  of  these  techniques in the analysis  of  sleep spindles. Sleep
spindles are strong oscillatory phenomena consisting of waxing-and-waning field potentials of 7-14 Hz, grouped in
sequences that are short-lasting with a mean duration of around one second. They are considered as sleep maintaining
events that block the transfer of sensory information into the cerebral cortex during sleep. Spindles occur with the
highest density during the stage 2 of sleep and are generated as the result of synaptic interactions of neurons of the
reticular thalamic (RE) neurons, thalamocortical relay cells and cortical pyramidal neurons (Steriade 1995).

2. Material and Methods
One fascinating field of application of inverse problem theory is the exploration of the human brain. Almost, if

not all the available techniques used to image the brain, e.g., PET, SPECT, MRI, CAT, involve the solution of an
inverse  problem.  Probably  the  most  mathematically  challenging  of  these  problems  is  the  one  related  to  the
construction of a tomography of the neural activity of the brain based on the electric and magnetic fields measured
at/near the scalp surface.

This inverse problem, usually referred as the neuroelectromagnetic inverse problem or the source localization
problem or the EEG/MEG source imaging, can be represented by a (first kind) Fredholm linear integral equation.
This equation denotes the relationship between the data measured at the external point, d(s), and the superposition of
the contribution of the unknown current source density distribution at locations r inside the brain (Fuchs, et al. 1999;
Hamalainen 1993; Hamalainen 1992).

d(s) = ∫ L(s,r)•j(r)dr
Brain

(1)

The (vector) lead field function L(s,r) contains all the information about the boundary conditions, as well as the
media conductivities or permittivities for the electric and magnetic cases, respectively.

Under real conditions, neither the measurements nor the lead field function is known for arbitrary surface/brain
locations.  However,  assuming  that  the  integral  equation  can be  approximated  by a  discrete  sum,  Eq.  1  can  be
represented by an underdetermined system of linear equations:

d = Lj (2)
Vectors d and j and matrix L represent the discretization of the continuous functions, i.e., dk = d(sk), jm = j(rm),

and Lkm = wkmL(sk,rm) and wkm are the quadrature weights for m=1 to Number of solution points and for k=1 to
Number of sensors.

All linear solutions of Eq. 2 can be obtained by solving a variational problem (Grave de Peralta-Menendez 1998).
This yields the inverse matrix G that, when applied to the measured data, produces the estimated current density
vector  , i.e.:

 = Gd (3)
Substitution of the measured data, as described in Eq.2, into Eq. 3 yields the following fundamental equation for

underdetermined linear systems:

 = Gd = GLj = Rj (4)
Here, R=GL denotes the resolution matrix describing the relationship between the estimates and the original

magnitudes. The rows of R are called resolution kernels and represent the way current source estimates are distorted
by the reconstruction procedure G and the media properties L.
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In principle, to solve the inverse problem one has to model two aspects: the sources (generators) and the volume
conductor.  The volume conductor  model  is  the  model  used  to  describe  the  geometry and  electrical  parameters
(conductivity,  magnetic  permeability)  of  the  head.  Although  the  most  accurate  volume conductor  model  is  the
realistic one extracted from MRI or CAT of the individual subjects, such images are hardly available in practice for
the study of  normal subjects. For these reasons  and their  mathematical simplicity, multicompartmental spherical
models are still widely used to model the head.

Because of the shortcomings of spherical head models, efforts have been made over recent years to combine the
computational efficiency of spherical head models with more realistic and accurate descriptions of the head shape.
Huang (Huang, et al. 1999) proposed a sensor-weighted overlapping-sphere (OS) head model for rapid calculation of
more realistic head shapes. The volume currents associated with primary neural activity were used to fit spherical
head models for each individual MEG sensor such that the head is more realistically modeled as a set of overlapping
spheres, rather than a single sphere. Comparisons of the OS model, with more realistic models and the multishell
spherical model showed that the OS model has an accuracy similar to the realistic methods but is faster to compute.
This model has been extended to EEG by (Ermer, et al. 2001) with improvements in localization accuracy and speed
similar to those obtained for MEG. Following the same direction we present in the next section a simple alternative to
compute realistic head models based on subject magnetic resonance image (MRI).

2.1 Symmetric spherical head model with anatomical constraints (SYSMAC)
Based on the transformation of the MRI into a sphere, SYSMAC shares the simplicity of the spherical model

computations and the detailed description of the geometry (i.e. scalp, brain, etc.) of boundary element methods. The
main difference with SMAC (Spinelli, et al. 2000), resides in the improvement of the alignment of the MRI image
and the electrode configuration (projected on the spherical model). This guarantees that the symmetry plane of both
systems perfectly coincides, thereby avoiding that the estimated source activity might change from one hemisphere to
the other (Michel, et al. 2004).

The main characteristic of SYSMAC is that anatomical landmarks (Inion, Nasion and Vertex) are selected at the
central plane separating both hemispheres (interhemispheric fissure or brain symmetry plane). This information is
used as a hard constraint for the computation of the center of the best fitting sphere. Importantly, the fitting is only
applied to a subset  of points of the smooth part  of  the  MRI, i.e.,  scalp points with a positive projection on the
direction orthogonal to the nasion-inion line and pointing towards the vertex. Once the center is correctly located at
the symmetry plane of the MRI, two orthogonal rotations are enough to make the nasion-inion line of both systems
parallel. An additional orthogonal rotation will make parallel the pre-auricular lines. Typical errors in the alignment
of the theoretical (spherical) model and the MRI are represented in Figure 1. The misalignments results in asymmetric
lead field matrices and thus in location biased source reconstructions.

Figure 1. Alignment between the spherical model and MRI. A) Correct: the plane of symmetry of both models coincides. B)
and  C)  Incorrect:  Symmetry  planes  of  both  systems  are  not  aligned  due  to  incorrect  position  of  the  center  (C)  or  lack  of
parallelism (B).

In summary the main advantages of SYSMAC can be itemized as follows:
1) Detailed description of the head anatomy as provided by the MRI of the subject.
2) Spherical approximation of the lead field using a different sphere for each brain site (solution point).  We

would note  that  transformation  to the  spherical  space is neither  necessary and  probably nor  an efficient
alternative for subsequent computations.

3) Computation in the MRI space entails the use of integer coordinates and thus the use of efficient algorithms to
compute regularization operators as local autoregressive averages (LAURA), spatial derivatives, etc.

2.2 Multivariate Space Time Frequency (MaSTiF) decomposition of the EEG
The starting point for the analysis is the recorded EEG or MEG data D (with columns d as in Eq.2 and 3). This

data matrix consists of Ns rows determined by the sensors and Nt  columns associated with the temporal evolution of
these signals. Since the sensors are associated with locations over/near the scalp, the columns of this matrix can be
interpreted as spatial patterns while its rows as temporal patterns. The following decomposition emphasizes this
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interpretation in terms of the superposition of multiple components:
K

DNsxNt = SNsxK TKxNt =  ∑S• iTi•
i=1

(5)

where K defines the number of components yielding the noise-free data. The i-th column of S and the i-th row of T
are the spatial and temporal patterns associated with the i-th component.

The decomposition in Eq 5 is not unique and some other constraints are needed. A very general framework
comprising several standards and emerging techniques is the Blind Signal Processing approach (Cichocki 2004), that
includes, among others, the Principal Components Analysis (PCA) method and the Independent Component Analysis
(ICA) method. Whereas PCA searches for orthogonal patterns in both the space and the time domain, ICA searches
for spatial patterns with statistically independent time courses (temporal patterns). Although the assumptions about
the orthogonality or the independence of the temporal patterns are debatable, these methods (PCA and ICA) have two
clear limitations namely, 1) they have no information about the spectral components of the signal, i.e., insensitive to
non stationary data, and 2) they provide no information about the reliability of the estimated spatial patterns.

An alternative decomposition of the data that takes into account the spectral components of the signal and the
multivariate nature of the measurements was proposed in (Gonzalez Andino, et al. 2000). This multivariate space-
time frequency decomposition produces for each time t and frequency value w, a (space) data map d(t,w) representing
the (approximate) contribution of that time and that frequency to the observed (measured) map d(t). As for the PCA
and ICA, these maps can be submitted to source localization procedures to obtain the generators associated with it.

MaSTiF decomposition method is based on the time frequency representation of all sensors considered together.
Let us denote by C(t,w) the column vector composed by the complex time frequency coefficient of all sensors at
(t,w). If all sensors have  approximately the same phase at (t,w), then C(t,w) is approximately equal to the real vector
d(t,w) times a complex number. If this is true, the ratio between the lowest eigenvalue and the highest eigenvalue of
the  2D covariance matrix  computed  from the  complex  numbers  in vector  C(t,w) should  be  small  (close  zero).
Otherwise it can increase up to one. This measure called simplicity test can be plotted for all time frequency values to
produce an image m(t,w) indicating the time frequency points where the approximation can be granted.  This is
extremely useful to compute the brain sources associated with spikes or to study epilepsy propagation during the first
milliseconds of seizure onset. For an example on seizure propagation analysis see (Gonzalez Andino, et al. 2000).

2.3 The  Irrotational source model: ELECTRA
Several (theoretical) source models have been used to solve Eq.1 and 2 and thus to describe the sources of the

electromagnetic  activity  of  the  brain,  e.g.,  dipoles,  monopoles,  current  density  vector.  However,  none  of  these
theoretical  source  models  actually  exists  within  the  brain  nor  is  any  physically  measurable.  Instead,  real
measurements are the result of quantifiable potentials at different “measurable” levels.  At the microscopic (neuron)
level,  this is the  membrane potential.  At  the  macroscopic  (region)  level,  this  is the  local  field potential  (LFP).
Through  volume  conduction,  these  potentials  arrive  at  the  scalp  where  they  are  measured  as  the
Electroencephalogram (EEG). It is then natural to question whether potentials inside the brain can be related to and
thus computed from potentials measured at the scalp.

A positive answer to this question can be given if we notice that macroscopic primary sources, i.e. the generators
of the EEG, are dominated by microscopic secondary (volume) currents or in Plonsey words (Plonsey 1982) that “the
fields measured do not even arise from J [the current source density vector field] but rather from secondary sources
only. These secondary sources, in turn, depend on both the electrical field and the interfaces, and hence are related to
divergence of J and the geometry”. We would note that this kind of source corresponds to a potential distribution
inside the brain.

A definitive theoretical argument can be obtained if we notice that, according to the Helmholtz theorem, the
current density vector field can be written as the sum of a solenoidal vector field plus an irrotational vector field plus
the gradient of a harmonic function. Based on Green identities, it follows that only the irrotational current contributes
to the measured potentials (EEG). In mathematical parlance, it means that the EEG generators fulfill:

 × J = 0 <=> J =  φ (6)
where φ is a potential field within the brain. Assuming piece-wise constant conductivities it is very easy to show
(using Poisson equation) that φ has the same sources and sinks as the EEG potential. This argument explains why we
use the term Local Field Potential to denote these non-invasive estimates. Still these estimates are far from having the
spatial resolution of LFP recorded with micro-electrodes in animals. Our non-invasive estimates own, in the best
case, a spatial resolution comparable to that of intracranial recordings in epileptic patients.

Moreover, plotting the modulus of the estimated primary current obtained by Eq.1 or Eg.2, which we would note
has  thus  far  been  the  common  procedure  used  to  depict  inverse  solutions  results,  does  not  reflect  the  actual
generators. Instead, the actual generators are determined by the sources and the sinks obtained from the Laplacian of
potential field φ or the divergence of the primary current density vector ( •J ).
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The irrotational source model (ELECTRA) corresponds to the solution of one of the following problems (Grave
de Peralta et al., 2000; Grave de Peralta et al., 2004): 1) The estimation of an irrotational current density vector J = 
φ with the standard vector lead field. 2) The estimation of a scalar field, the current source density (CSD), •J =
I with a scalar lead field. 3) The estimation of a scalar field, the potential distribution φ inside the brain, with a
transformation of the standard vector lead field.

In summary, the main advantages of the irrotational source model of ELECTRA are:
1) Reduction of the number of unknowns. Since we need to estimate only a scalar field instead of a vector field,

the number of unknowns is reduced three-fold. Given that the ratio between the number of unknowns and the
number of sensors is a measure of uncertainty, we can say that the inverse problem with irrotational sources is
better  determined  than  the  unrestricted (arbitrary  current  density vector)  estimation  problem (Eq.  2).  In
practice this leads to images with increased spatial resolution (see Grave de Peralta Menendez, et al. 2000) for
examples of visual evoked potentials).

2) The use of a scalar magnitude facilitates the inclusion of additional a priori information from other modalities
of brain images (e.g., fMRI, PET, SPECT) and reduces the computational load. In addition, post-processing of
the single time series associated with each solution point might be easier than the analysis of three time series
of the current density vector model.

3) Unquestionable constraints. The existence of irrotational sources is a condition necessary and sufficient for
the existence of EEG. More simply, EEG recorded at the scalp surface is due to, and only due to, the presence
of irrotational sources inside the brain. This constraint is independent of the data.

4) Experimentally verifiable model. Although defined up to a sign change, the potential distribution produced by
this source model can be directly compared with intracranial potentials and measures (e.g. spectrum, energy,
etc) derived from them. Related to this point,  these estimated LFPs could also be compared with similar
measurements from other species.

A  final  theoretical  point  to  discuss  is  the  possibility  to  use  the  irrotational  source  model  with  magnetic
measurements (MEG).  While  the general electromagnetic  formulation cannot exclude the existence of  rotational
sources (rotor or curl different from zero), the results of Plonsey about the sources of the bioelectric and biomagnetic
fields are rather conclusive: “Even if the divergence and curl of the primary source were independent (and hence were
both needed to define the primary source), because the secondary sources all arise from the divergence of the primary
source the magnetic field reflects the same source component as the electric field”. In our opinion, this argument
speaks in favor of applying the ELECTRA source model also to magnetic measurements.

3. A practical example: Studying sleep spindles.
We  selected  sleep  spindles  as  the  example  to  illustrate  this  technique  because  they  are  one  of  the  oldest

oscillatory phenomena known but little information is available about its functional role. The study of spindles, a pure
oscillatory  phenomenon,  requires  the  use  of  non-invasive  high  temporal  resolution  techniques  neuroimaging
techniques as the one proposed here. Techniques based on the hemodynamic responses are of little help in their study.

Some  recent  studies  link,  sleep  spindles  with  episodic  memory  consolidation  (Stickgold  2004).  Regarding
declarative memory consolidation, sleep may provide a state during which newly acquired memory contents, which
are temporarily stored in the hippocampus, can be easily transferred to the neocortex for integration into long-term
memories (Buzsaki 1998). Siapas and Wilson (Siapas and Wilson 1998) reported that hippocampal ripples, known to
play a role in memory formation, occur in a temporal correlation to sleep spindles in single cell derivations.

3.1 Data Collection and Preprocessing
Nocturnal  EEG was collected  from 64  electrodes  in an epileptic  patient  using a  sampling rate  of  200  Hz.

Electrodes were positioned according to the extended 10/20 system as indicated in Figure 2. Preprocessing consisted
in a nearest neighbour based interpolation of electrode P5 and transformation of the data to the average reference.
Sleep spindles were automatically selected from the stage 2 of sleep using a semiautomatic procedure described
below.

To select sleep spindles we used the concept of the spectral envelope. A set of two frontal, two central and two
parietal EEG channels were a priori selected. The EEG at these channels was narrowly band filtered within two
frequency ranges (11-13 Hz and 13-15 Hz). The band-pass filter was based on a simple direct and inverse Fourier
transform with pruning of undesired frequencies. The envelope was computed for the filtered signals in both ranges
by transforming the filtered data  to z-scores followed by a Hilbert  transform. The Hilbert  transform returns the
analytic signal  whose magnitude is  the  complex envelope of  the  original  signal. Spindles were  marked  if  their
envelope showed the characteristic waxing and waning properties characteristic of sleep spindles in frontal, central or
parietal derivations. Typical examples of the signals and their envelopes are shown in Figure 3.
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Figure 2. Flat view of electrode positions for the recorded nocturnal EEG.

Figure 3. EEG signal at a frontal derivation (blue) filtered between 11 and 13 Hz and the spectral envelope.

3.2 (MaSTiF) decomposition of the sleep spindles.
EEG segments containing two or more consecutive spindles were selected for analysis. The goal was to study the

whole  spatio-temporal  distribution of  the  spindle  generators  not  only  at  the  time of  spindles  but  also  between
spindles. The rationale to analyze the inter spindles interval derives from the experimental observation that in rats
cortical  spindles  tend to follow hippocampal  ripples  (Siapas and  Wilson 1998).   It  has  been suggested that  the
hippocampal circuitry may be biasing the initiation of the spindle–ripple episodes either through direct anatomical
projections (Jay and Witter, 1991) or indirectly through neural systems such as the entorhinal cortex or the basal
ganglia. We were therefore interested in observing if temporal lobe structures were activated during the inter-spindles
interval.

Figure  4 shows some original  EEG traces for  a  segment where  three  spindles were  identified.  The vertical
markers indicate the timing of the spindles as detected from their spectral envelope. Figure 5 (lower panel) shows the
modulus of the MaSTiF decomposition, d(t,w), for the EEG segment shown in Figure 4 and its associated simplicity
test map (Figure 5, upper panel). The simplicity map indicates the time frequency points where the map seems to be
produced by a simple generator configuration, i.e., all sensors have approximately the same phase for the given time-
frequency pair.

In  this  particular  example  the  MaSTiF approximation  was  computed  using  the  Fourier  transform based  on
overlapping windows of duration 2 seconds. This leads to a frequency resolution of 0.5 Hz. The overlapping of
consecutive windows was 1.9 seconds. Thus, the analysis reflects an effective temporal resolution of 10 ms and a
frequency resolution of 0.5 Hz. While the frequency resolution of this method is similar to the one achievable by
other spectral methods, increasing the overlap can increase the temporal resolution up to the original resolution of the
data. Although such excellent temporal resolution can be achieved by time-frequency (TF) based analysis procedures,
we would note that TF’s alone do not directly lead to interpretable potential maps as done by MaSTIF.
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Figure  4.  Original  EEG  traces  with  markers  (green  vertical  lines)  indicating  the  spindles  identified  from  the  spectral
envelope.

Figure 5. MaSTiF approximation for the spindle data shown in Figure 4. The lower panel depicts the global time frequency
energy. Darker colors indicate strong energy concentrations around the specified time-frequency region. The upper panel shows
the  results  of  the  simplicity  test.  Darker  colors indicate  simple  maps  likely  to  be  generated  by  simple configurations of  the
generators.

 The results of Figure 5 indicate the presence of the several time-frequency energy spots (see lower panel). In
particular, the three spindles shown in Figure 4 are clearly delineated as strong time frequency energy peaks at 3.6,
6.8 and 11 secs. Interestingly, the plot indicates the simultaneity of 12 and 14 Hz spindles in nearly all cases. This is
suggestive of the coexistence of different neural processes within a single spindle. The evidence that these are in fact
different neural processes that coexist in time is given by the differences in topography of the simultaneous spindles
at 12 and 14 Hz shown in Figure 6. This plot presents an expanded view of the middle spindle occurring between 6
and 8 secs. This spindle  is selected because the  simplicity plot suggests the existence of  simple  maps for  both
frequencies, i.e.,  12 and 14 Hz. Importantly, while the existence of  different scalp maps is a certain evidence of
difference  in  neural  generators,  the  opposite  does  not  hold.  Similar  scalp  maps  can  be  produced  by  different
configuration of generators due to the existence of silent sources, i.e., sources that produce no scalp EEG (e.g. closed
fields). In fact this is the origin of the non-uniqueness of the neuroelectromagnetic inverse problem.
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Figure 6. Topographic distribution of sleep spindles for the 12 Hz (left) and 14 Hz (right) time frequency spot. Top plots show
the spatial distribution of waveshapes obtained after MaSTiF for the 12 Hz (left) and 14 Hz (right). The sequence of maps is shown
for each range to demonstrate the stability of the map sequence during the spindle. Notice that except for polarity inversions, the
same scalp spatial pattern remains during the whole spindle cycle. Slower spindles show frontal distribution.

To localize the generators of the sleep spindles we used the simplified SYSMAC head model and the variant of
ELECTRA source model based on the estimation of intracranial potentials. The SYSMAC model was constructed on
the basis of  a standard head model since the  subject  individual  MRI was not  available. A total of  4024 knots,
homogeneously  distributed  over  the  gray  matter,  composed  the  solution  space  for  an  effective  resolution  of  6
millimeters. Conductivities for the lead field construction were assumed as in Stok.

The localization results for the spindles at 12 and 14 Hz shown in Figure 6 are displayed in Figure 7 and 8
respectively. While the localization results cover the same period than in Figure 6, we have reduced the number of
images shown over the interval to facilitate visualization of the results. The localization results are very stable over
the spindle period as expectable from the stability observed for the scalp maps. The slower spindles at 12 Hz have
maximum (minimum) that  localize  to the  middle  frontal  lobe (Brodmann area  9).  The frontal  localization  was
consistently observed over several explored spindles although some spindles showed maxima at the inferior frontal
gyrus rather than the middle frontal gyrus shown here. Hemispheric lateralization was not clear though most spindles
start at the left or right hemisphere and progress towards a more bilateral involvement around the spindle peak.

Figure 7. ELECTRA localization for the slower spindles at 12 Hz. The sequence of maps represents the temporal evolution of
localization over the spindle cycle. Maxima (positive potential) are represented in red an marked with a red cross and minima in
blue with a blue cross indicating the exact position. Note that the maxima and minima remain stable over the window except for
the polarity inversions.
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The maxima for faster spindles at 14 Hz were systematically localized at parietal or parieto-occipital areas as
shown in Figure 8. Curiously, the frontal spindles progressively involved anterior cingulate areas toward the spindle
maximum while parietal spindles recruited motor cortical areas during their development. Apparently, the increase in
the amplitude of the spindles is not only due to the increase in activity at frontal or parietal areas but also to the
progressive  recruitment  of  additional  structures  anatomically  connected  to  the  site  where  the  spindle  initially
developed, i.e., frontal cortex to cingulate and parietal cortex to motor areas.

Figure 8. ELECTRA localization for the faster spindles at 14 Hz. Note that the maxima and minima remain stable at parietal
locations over the spindle cycle except for the polarity inversions. Note the progressive recruitment of sensory-motor cortex over
the cycle.

One interesting finding of this analysis was that we often observe strong activity localized at brain voxels located
at near the putative position of the thalamus in our head model. Such deep activity corresponded even with the
maximum or the minimum at some punctual times that preceded the spindles. Such strong thalamic activity was never
observed at the spindle during the times of maximal spindle waning or waxing. Later observation reveals that deep
brain activity can be observed at the scalp and thus localized with inverse solutions when the cortical areas are
relatively silent and the deep activity is strong. This is likely to be the case for sleep spindles for which thalamus is
known to be a basic generator. One example of such activation is presented in Figure 9.

Figure 9. Voxels at the putative localization of the thalamus can appear as the maxima or the minima of the activity recovered
by ELECTRA inverse solution. Here the maximum is indicated by the red cross. Thalamic activity was often observed preceding
the start of the spindle, i.e. when cortical areas were practically silent.
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Figure 10. Stable temporal lobe activity is observed during the inter-spindles intervals.

We were also interested in analyzing the stability and generators of the activity during the inter-spindles intervals.
Experimental evidence (Sirota, et al. 2003) indicates that sleep spindles promote hippocampus ripples after a certain
temporal delay. It is therefore interesting to explore the areas activated after spindles. We did in fact found stable
activity after all spindles explored. The stability occurred preferentially after the slower 12 Hz spindles that showed
maxima at temporal brain areas. In general the frontal maximum observed during the spindle shifted toward temporal
areas of the same hemisphere where the frontal maximum was found. This effect is illustrated in Figure 10. The
sequence of maps  shows the  end of  the spindle with the  right frontal maximum and minimum followed by the
increase in activation at the right middle temporal lobe that soon becomes the maximum. Activity is progressively
shifted towards the right superior temporal gyrus. The axial slide shown in Figure 11, at the level of the blue line
shown in the rightmost inset, illustrates that the temporal activity observed after spindles is not restricted to the cortex
but also involves deep temporal lobe structures such as the hippocampal/amygdala formation.

Figure  11.  Simultaneous  cortical  and  subcortical  activity  (amygdala/hippocampus  formation)  is  observed  during  the
interspindles interval.

3. Discussion and Conclusions
We  have  described  in  this  manuscript  some  techniques  that  help  to  simplify  the  solution  of  the

bioelectromagnetic inverse problem. The use of the proposed head model, the SYSMAC, permits a realistic selection
of individual anatomical details for lead field design and consequently realistic inverse solution displays whereas
keeping the computational simplicity of spherical head models.  The SYSMAC model constitutes a refinement of the
originally proposed SMAC that guarantees a correct hemispheric alignment. This is a non-trivial detail for multiple
applications of the inverse problem such as epileptic focus localization or neurocognitive studies aimed to assess
interhemispheric functional differences in tasks such as language. The use of a solution space that conforms to the
individual subject brain is essential for functional localization given the large interindividual variability observed in
cortical anatomy and the variability in functions. The images presented in this study are an example of the level of
realism that is attainable with this easy to compute head model.



IJBEM, Vol. 8, No. 1, 2006 Page 54

The simplification in the source model introduced by the variant of ELECTRA used here, based on the estimation
of  intracranial  potentials,  is  both  conceptual  and  computational.  This  variant  reduces  threefold  the  number  of
unknowns to be estimated with the same amount of data when compared with source models based on the whole
current density vector. This reduction complies with the idea that the part of the current density vector that is silent to
the measurements should not be searched for. Silent sources cannot be recovered unless complete a priori information
about them is provided by alternate simultaneous measurement modalities. Furthermore, ELECTRA estimates the
temporal course  of  intracranial  potentials  amenable to direct comparisons  with actual  intracortical  recordings  in
patients. This is not the case for current density estimates or dipolar moment estimates that are often incorrectly
compared with direct recordings. Because the current density is the first spatial derivative of the potentials, a direct
comparison between  current  estimates and intracranial  recordings  makes  as  little  sense  as  comparing apples  to
oranges.

The  MaSTiF  decomposition  tackles  a  very  important  problem  in  modern  Neuroscience  by  providing  a
mathematically founded tool for the analysis of oscillatory brain phenomena with a temporal resolution that can be
identical to the one in the original data. Importantly, the assumption of stationarity of the time series, hardly plausible
for most electrophysiological processes is avoided in this approach based on linear time-frequency decomposition. 
Notice that the principle behind the  MaSTiF decomposition differs from the pure mathematical  rationale behind
decompositions as ICA or PCA. MaSTiF, is compatible with the experimentally supported idea (Andersen and Buneo
2002) that the same neural population codes within different frequency bands information about task parameters and
intentions. These concurrent oscillatory phenomena difficult the analysis and interpretation of the recorded data since
simultaneously occurring oscillations cannot be separated in the temporal domain.

The MaSTiF decomposition is not a data reduction technique as ICA or PCA. It rather increases the amount of
data by splitting concurrent processes. The plots described in the paper, i.e., the time frequency global energy plot and
the simplicity plot compensate such data splitting. They serve to provide a fast view of long spontaneous multivariate
data resuming in a single image the whole information contained in the spatial, spectral and temporal domains. The
plots help to immediately track oscillatory events of interest, to isolate them and to decide based on the simplicity, the
scalp maps where reliable localization is to be expected. Moreover, it is precisely the data splitting that allows for
better and more reliable localization results. First, the MaSTiF method filters out noise that tends to be confined to
frequency bands different from the ones reflecting actual electrophysiological processes. Second, an instantaneous
scalp map  is approximate,  the  superposition  of  all  scalp  maps generated by  MaSTiF for  all  frequencies  at  the
corresponding time. This trivially implies that a single time-frequency map generated by MaSTiF is simpler in terms
of the amount of active sources than the corresponding instantaneous map. The existence of simultaneously active
sources complicates the task of linear inverse solutions leading to an increase of ghost and lost sources (Grave de
Peralta-Menendez 1998). Thus, as any method that minimizes the likelihood of multiple active sources results, the
localization results obtained for the MaSTiF transformed data are more credible than the localization results obtained
for the original raw EEG.

The  analysis  of  sleep spindles  described here  serves  to  illustrate  the  techniques.  Interpreting  the  results  in
neurophysiological terms would be too precipitated since a single subject was considered in the analysis. Still, our
results are concordant with previous studies in terms of the separation (Durka, et al. 2005) of fast and slow spindles
and their differential cerebral localization. In agreement with Anderer (Anderer, et al.  2001) we found that slow
spindles had maxima at the frontal lobe while faster spindles at 14 Hz preferentially activated parietal areas. We did
also observe a progressive recruitment during the spindle cycle of Anterior Cingulate Areas by frontal spindles and of
sensory-motor areas by parietal  spindles.  This result  requires to be  confirmed over a larger amount of  subjects.
Interestingly, during the interspindles interval we observe systematic activation of temporal lobe structures at both the
cortical surface and subcortical structures systematically involved in memory. Such a relationship, if proved to be
consistent over a larger number of subjects could constitute additional evidence to support the proposed role of sleep
spindles in memory consolidation.

Our results show that deep brain activity, in particular thalamic activity, can be recovered by inverse solution
methods. This might surprise those who believe that scalp measured fields (EEG and MEG) are not sensitive to deep
sources. In fact, there are some experimental studies showing that thalamic activity can be detected by external MEG
recordings (Ikeda, et al. 2002) even though the MEG is no more sensitive  than the EEG to deep sources (Malmivuo,
et  al.  1997).  Sources are silent, i.e.,  not  measurable  by the scalp EEG or  MEG,  not  because  they are  deep or
superficial  but  because  they  have specific  field  configurations  (e.g.,  closed  fields)  or  physical  properties  (e.g.,
irrotational sources produce no EEG). This means that even if spatially smeared, deep sources are reflected in the
measurements and can be thus localized by inverse solutions.
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