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Abstract. The present study introduces source models for EEG/MEG cortical source imaging, which can consider
anatomical constraints more accurately. Conventional models have used coarse cortical  surface mesh or sampled
some vertices from fine surface mesh, and thus they failed to utilize full anatomical information which we can get
with sub-millimeter modeling accuracy. Conventional ones placed a single dipolar source on each cortical patch and
estimated its intensity by means of various inverse algorithms; whereas the suggested model integrates whole cortical
patch area to construct lead field matrix and estimates current density that is assumed to be constant in each patch. We
applied the proposed and conventional models to realistic EEG data and compared the results quantitatively. The
quantitative  comparisons showed that  the proposed model  can provide more accurate spatial  descriptions of  the
neuronal source distribution.
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1. Introduction

Macrocolumns of tens of thousands of synchronously activated pyramidal cortical neurons are widely believed to
be the main EEG and MEG generators because of the coherent distribution of their large dendritic trunks which are
locally oriented in parallel, perpendicularly to the cerebral cortical surface [Nunez and Silberstein, 2000; He 2004,
2005].  Nowadays,  this  physiological  phenomenon  has  been  successfully  adopted  and  widely  used  as  a  basic
anatomical constraint in EEG and MEG source imaging [Dale and Sereno, 1993; Buchner et al., 1997; Kincses et al.,
1999; Fuchs et al., 1999; Dale et al., 2000; Babiloni et al., 2001, 2003; Baillet et al., 2001a]. The source imaging with
the anatomical constraint,  which has been often called cortically distributed source model [Baillet et al.,  2001b],
resulted in elimination of spurious sources [Baillet et al., 1998] as well as reduction of crosstalk distribution [Liu et
al., 1998], compared to conventional voxel (volume pixel) based imaging techniques.

To impose the anatomical constraint, many dipolar sources should be placed on the cortical surface, usually on
the interface between white and gray matter of the cerebral cortex extracted from structural MRI, which is relatively
easier to be detected than the other borders. We can further constrain each of these dipolar sources to be normal to the
surface.  Then, the  strengths and/or orientations of  the dipolar  sources are determined using linear  (L2  norm)  or
nonlinear (Lp norm) estimation methods [Dale and Sereno, 1993; Fuchs et al., 1999]. To determine proper locations
and orientations of the scattered sources, the cortical surface is usually tessellated into a huge number of triangular
elements, the number of which is often exceeding several hundreds of thousands. Developments of medical image
processing techniques and high-resolution structural MRI enabled us to get high-resolution cortical surface with sub-
millimeter modeling errors [Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000]. Unfortunately, however, it is
computationally  inefficient  to  use  whole  cortical  surface  vertices  for  the  source  reconstruction  because  of  the
increased underdetermined relationship between the limited numbers of measurements and the number of unknown
variables to be reconstructed. To reduce the number of possible source locations, some people resampled the fine
mesh to a small number of larger triangles. Then, a unitary equivalent current dipole was placed in each node of the
triangulated surface, with an orientation parallel to the averaged normal vectors of the surrounding triangles
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[Darvas et al., 2004; Babiloni et al., 2005]. However, this kind of resampling approaches not only requires one more
complex image processing procedure, but also has large possibility to lose accurate sulci-gyri structural information
of the cortical surface. The other approach is to use a vertex-sampling process which has been frequently referred to
as a decimation process [David and Garnero, 2002; Dhond et al., 2003; Lin et al. 2004]. Small number of vertices was
downsampled from the cortical surface as regularly as possible and used for source reconstruction purpose; whereas
the original mesh information was used only for visualization purpose. This approach is very simple to be applied,
but  it  has  some  potential  problems.  First,  the  decimated  vertices  may  not  properly  represent  orientations  of
neighboring cortical vertices, especially around highly folded regions. This may result in significant reconstruction
errors because neighboring dipolar sources with more appropriate orientations can be overestimated instead of the
correct  one due to crosstalk effect.  Second,  if  the distribution of  the  decimated sources is irregular,  the  current
intensity estimate can be distorted because density of the dipolar sources is inversely proportional to the estimated
source intensity. Recently, Lin et al. [2005] tackled this problem by incorporating patch areas in the forward model to
yield estimates of the surface current density instead of dipole amplitudes at the current locations as well as adopting
loose orientation constraint (LOC), which allows some variation of the current direction from the average normal.
Their results showed that the use of current density and LOC can improve overall accuracy of the source estimates.

In the  present  study,  we have proposed  an alternative  source  model  to easily  solve the  problems of wrong
orientation and irregular patch areas. Our approach does not use a single dipolar source that represents its neighboring
vertices  but  uses  all  cortical  vertices  included in  many  small  patches  to construct  lead  field  matrix.  Since  the
constructed lead field matrix contains orientation and area information of all cortical vertices, the problems of the
conventional approaches can be nicely solved.

2. Methods

2.1. Conventional Source Model
As briefly described in the previous section, conventional source model has utilized reduced number of dipolar

sources  which were  decimated from fine  cortical  surface  structure.  Figs.  1(a)  and (b)  show an example  of  the
tessellated cortical surface and decimated source positions, in which 432,654 original vertices were reduced to 7,866
source positions. As seen in Fig. 1(c), a decimated vertex cannot properly represent orientations of its neighboring
vertices, even when the dipole vector was determined by summing all neighboring vectors. We then evaluated the
areas of patches and found that the size and shape of each patch are highly irregular1 [Lin et al., 2005]. Thus, to use
single dipolar sources to represent high resolution anatomical images may cause substantial errors in both forward
calculation and inverse estimation of bioelectromagnetic sources.

The variable that has been used for the conventional source model is the moment intensity of each dipolar source
when orientation constraint is imposed. Then, the relation between the dipole intensity and the measured data can be
expressed according to the following system:

x = AQ + n (1)

where x is a column vector gathering the measurements on NM sensors at a given time instant; Q is a column
vector made of the N corresponding dipole intensities; A is the NM×N lead field matrix; n is a perturbation or noise
vector. The lead field Aji is defined as electromagnetic quantity of jth sensor induced by ith dipolar source with unit
intensity. Among various forward calculation methods, in this study, boundary element method (BEM) considering
realistic geometry head model was applied [He et al, 1987; Hämäläinen and Sarvas, 1989].

2.2. Proposed Source Model
Contrary to the conventional source model, the proposed approach uses current density instead of the dipole

intensity as a variable. First, the cortical surface is divided into N small cortical patches. Then, each cortical patch is
assumed to have a constant current density Ji. In this case, the lead field Aji is defined as electromagnetic quantity of
jth sensor induced by ith cortical patch with unit current density. Suppose that the ith cortical patch includes k vertices.
Each vertex has its own unit normal vector nm = (n1m, n2m, n3m) and virtual area vm, where m = 1,…,k. The virtual
area was assigned to each vertex as a third of the area of all triangles meeting at a vertex [Chupin et al., 2002].

[1] The largest patch area is about 2 times larger than the smallest one.
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This assumption is valid because the total virtual area remains equal to the actual area of the full tessellation. Then,
we can evaluate the lead field ajm defined as relationship between mth vertex and jth sensor by placing a unit dipole
vector nm at the position of the mth vertex. Eventually, the lead field at jth sensor by a unit current density in ith

cortical patch is evaluated by integrating amj over the cortical patch as follows:

k

Aji =∑ ajmvm
m = 1

(2)

Fig. 2 illustrates the conceptual comparison between the conventional and proposed source models. We can see
from the figure that the new model can represent size, shape, and orientation of each cortical patch without any loss
of anatomical information.

Some previous studies have used similar concept of the constant cortical patch [David and Gareno, 2002; Kincses
et al.,  1999], but they didn’t  aim for compensating anatomical information lost due to downsampling of cortical
vertices.

Figure 1. An example of tessellated cortical surface and decimated sources: (a) cortical surface segmented and tessellated
from an MRI T1  images (MNI standard  brain);  (b)  original  and decimated  cortical  vertices.  432,654 original  vertices were
reduced to 7,866 source positions; (c) area-of-influence around a decimated source (red vector). The orientation was determined
by the vector sum of all vertices inside the patch.
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2.3. Forward Calculation and Inverse Estimation
In the present study, realistic geometry head model was considered to calculate electric potential induced by a

point dipolar source [Hämäläinen and Sarvas, 1989; He et al., 1987]. A three-layer boundary element model which
consists of scalp, outer skull and inner skull was adopted [Hämäläinen and Sarvas, 1989; He et al., 2002], which will
be described again in the next section.

We  used  a  linear  estimation  approach  [Dale  and  Sereno  1993,  Dale  et  al.  2000]  to  reconstruct  cortically
distributed brain sources. The expression for the inverse operator W is

Figure 2. Conceptual comparison between conventional and new source models: (a) conventional model uses a single dipolar
source in a cortical patch to evaluate lead field matrix; (b) proposed model uses all vertices inside the cortical patch to evaluate
the lead field matrix. Each vertex in the patch has its own unit normal vector nm = (n1m, n2m, n3m) and virtual area vm, where m =
1,…,k.

W = RAT (ARAT + λ 2 C )-1 (3)
where A is the lead field matrix, R is a source covariance matrix, and C is a noise covariance matrix. The source
distribution can be estimated by multiplying the measured signal at a specific instant x by W. If we assume that both
R and C are scalar multiples of identity matrix, this approach becomes identical to minimum norm estimation [Liu et
al., 2002]. In this study, the source covariance matrix R was assumed to be a diagonal matrix, which means that we
ignored  relationships  between  neighboring  sources.  The  lead  field  weightings  [Gorodnistky  et  al.,  1995]  were
imposed to each diagonal entry of  R.  In this study, pre-stimulus time window was used to calculate C.  λ2  is  a
regularization parameter and was determined systematically using the following equation [Lin et al., 2004]:

λ 2 =  
trace (ARAT )

trace (C) SNR 2
(4)

where trace(.) and SNR represent sum of diagonal terms and signal to noise ratio, respectively.
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2.4. Computer Simulation
Neuroelectromagnetic inverse problems are hard to be verified by in-vivo  experiments because exact  source

locations inside of the real human brain cannot be estimated a priori. For that reason, artificially constructed forward
data are widely used to validate MEG and EEG inverse algorithms [Kincses et al.,  1999; Sekihara et al.,  2001].
Hence, we applied the proposed approach to artificially constructed EEG data.

We adopted realistic conditions to construct artificial EEG data. We assumed 128 electrodes that were attached
on a subject’s scalp according to the extended 10-20 electrode system. To utilize anatomical information, interface
between  white  and  gray  matter  was  extracted  from  MRI  T1  images  of  an  MNI  standard  brain  (www.mrc-
cbu.cam.ac.uk/Imaging/Common/mnispace.shtml#evans_proc) and tessellated into 865,712 triangular elements and
432,654 vertices. To extract and tessellate the cortical surface, we applied BrainSuite developed in the University of
Southern California, CA, USA [Shattuck and Leahy 2002]. For the accurate forward calculation, full head structures
were  taken  into  account  and BEM was  applied  [Liu et  al.  2002].  In  the  present  study,  the  three-layer  model,
consisting of inner and outer skull boundary and scalp surface, was used. 5,372 boundary elements and 2,748 surface
nodes were  generated from the same MRI data. The relative conductivity values of brain, skull,  and scalp were
assumed to be 1, 1/16, and 1, respectively [Haueisen et al., 1997; Oostendorp et al., 2000]. Fig. 3 shows the boundary
element model used in the present simulation.

Nowadays, for the forward simulations, generating artificial activation patches on a brain cortical surface has
been popularized instead of  activating some point sources [Im et  al.  2003].  To generate  activation  patches  and
construct forward data set, the concept of virtual area was adopted. The activation patch was generated using the
following process: 1) A point is selected as a seed of an activation patch area. 2) The patch area is extended by
including neighboring vertices around the patch. 3) If the total virtual area of the cortical patch exceeds an aimed
surface area, the extension of the activation patch is terminated.

In the present study, we generated one activation patch for each simulation. The patch was made of a  set of
dipoles with constant current density and orientations perpendicular to the cortical surface. Then, the current dipole
moment  at each vertex was calculated by the  product of the  current density and the  virtual  area. The temporal
variation of current density J was assumed as follows:

J = - 0.6 × 10-4(t – 100)2 + 0.6 ( 0ms ≤ t < 200 ms)
   = 0 (200ms ≤ t < 400 ms)
After calculating electric potential at the 128-channel electrodes assuming 200 Hz-sampling rate, we added real

brain noise, which was obtained from a  pre-stimulus period of  a  practical EEG experiment. The original signal
without noise was scaled in order for the signal-to-noise ratio to be approximately 10 dB and 7 dB. Fig. 4 shows an
example of the artificial EEG signals with respect to time.

Figure 3. Boundary element model for EEG forward calculations. 5372 elements and 2748 nodes were generated. Note that
the cortical surface meshes were not  included in  the  EEG forward calculation.  They were used only for  positioning  dipolar
sources.



IJBEM, Vol. 8, No. 1, 2006 Page 25

Figure 4. An example of simulated EEG signals with real brain noise (SNR = 7 dB).

Although we used constant current patches to generate artificial EEG signals, they were not corresponding to the
cortical patches used for the inverse estimation because they were generated independently using full tessellation of
the  cortical  surface.  In  other  words,  the  ideal  patches  of  constant  activity  do  not  recover  exactly  the  patches
considered in the source modeling.

3. Simulations Results
We applied three different source models to the artificial EEG data. The three cases are as follows:
(Case 1) One dipolar source was placed on each patch, which is the conventional source model. The dipole

intensity was  used as  a  variable  and the  dipole  orientation was  determined by  summing  up normal  vectors  of
neighboring vertices inside the patch.

(Case 2) One dipole source was placed on each patch as in the conventional source model, but area information
of each patch was considered. Current density was used as a variable and area of each patch was multiplied by the
conventional  lead  field.  The  dipole  orientation  was  determined  by summing  up  normal  vectors  of  neighboring
vertices inside the patch. This case was simulated to investigate the influence of different patch sizes on the solution
accuracy.

(Case 3)  Lead field matrix was evaluated by integrating all cortical vertices inside each patch, which is the
present source model.

The three cases were tested for 50 activation patches of which the positions and sizes were randomly chosen.
Two different SNRs, 10 dB and 7 dB, were simulated for each patch location. The same inverse method given in Eq.
(3) was applied to the three cases. Fig. 5 and Fig. 6 show examples of results for two different patch locations when
SNR was 7 dB. Each figure shows exact source location and source distributions reconstructed at 100 ms. The
magnitude of the variables was normalized with respect to maximum value and sources that exceeded 0.1 were
visualized. From the results, we can see the followings:

- When comparing the results of (Case 1) and (Case 2), we can see that the irregular distribution of patch sizes
has just small influence on the solution accuracy. We can also see intuitively that the emergence of small oscillatory
sources was reduced slightly by using current density as a variable, which coincides well with a previous study [Lin
et al., 2005].

- When the proposed source model was applied, the resultant distributions were more focalized compared to
those of  (Case 1) and (Case 2). Moreover, the shapes of the patches were more clearly reconstructed.  Since the
maximum magnitude was increased, many noisy sources had smaller normalized values than the cutoff magnitude
(0.1) and removed from the visualization.
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For more quantitative comparison, an assessment criterion named DF (degree of focalization) was introduced to
measure the accuracy of the reconstructed source [Im et al., 2003]. The DF is defined as energy reconstructed in a
patch area divided by overall energy[2]. If the energy in the assumed patch is exactly the same as that of whole source
space, DF becomes 1. On the contrary, if the source is perfectly mislocalized, DF will be close to 0. Thus, higher DF
implies that the method can reconstruct more accurate and focalized source distribution. This assessment criterion is
similar to the ROC curve analysis which investigates the relationship between true positive fraction and false positive
fraction [Darvas  et  al.,  2004]. Fig. 7 shows the comparison of  the DF values averaged for  50 activation patch
simulations with different patch sizes and locations. The DF values decreased as the SNR increased, but the overall
tendencies remained unchanged. We applied t-test to verify statistical difference of  DF values between new and
conventional  source  models.  The  t-test  applied  from  (Case  1)  and  (Case  2)  against  (Case  3)  stated  statistical
differences (p < 0.0005), while the (Case 1) and (Case 2) does not differ in their mean DF values (p > 0.1). It can be
seen from the results that the proposed source model could result in more focalized and accurate source distribution
very consistently. These results  demonstrate  that  the orientation errors  affect solution accuracy much more than
irregular patch size does.

[2] In this study, the integration was performed only for limited sources of which the magnitude exceeded 30% of
maximum value because the general minimum norm solution results in small DF values.

Figure 5. Results of a realistic EEG simulation – a patch was assumed around right inferior temporal lobe: (a) Exact patch
location; (b) Source distribution of (Case 1); (c) Source distribution of (Case 2); (d) Source distribution of (Case 3). All quantities
were normalized with respect to their own maximum value. Sources that exceed 0.1 are visualized. SNR = 7 dB. DF values of (b),
(c), and (d) are 0.081, 0.083, and 0.184, respectively.
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Figure 6. Results of a realistic EEG simulation – a patch was assumed around left frontal lobe: (a) Exact patch location; (b)
Source distribution  of  (Case 1);  (c)  Source distribution of (Case 2);  (d)  Source distribution of  (Case  3). All quantities  were
normalized with respect to their own maximum value. Sources that exceed 0.1 are visualized. SNR = 7 dB. DF values of (b), (c),
and (d) are 0.065, 0.069, and 0.153, respectively.
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Figure  7.  Comparison  of  DF  values  averaged  for  50  cortical  patch  simulations.  Values  in  parentheses  are  standard
deviations.

4. Discussion
Many researchers have been trying to make the spatial resolution of EEG and MEG comparable to that of fMRI

or PET, which is believed to have higher spatial resolution than EEG or MEG. As for hardware aspect, more and
more researchers are moving to a higher number of channels, and EEG acquisition systems with 128 channels are not
uncommon anymore. Even 256 channel EEG systems are commercially available now [Suarez et al., 2000]. In the
case of  MEG, over 250 channel  systems have been already popularized (e.g. CTF 275 MEG system) and being
widely used. Combination of different modalities is now becoming a new alternative to enhance the limited spatial
resolution of the electromagnetic-based imaging techniques [Dale et al., 2000]. As for software aspect, a lot of source
imaging algorithms have been developed to get more accurate and focalized source estimate. Many methods are now
adopting  brain  anatomy  as  a  basic  constraint  because  high-resolution  structural  MRI  technology  and  image
processing techniques enable us to get more accurate information on the human brain anatomy [Dale et al., 1999;
Fischl and Dale, 2000].

The present study deals with a problem arising when imposing the anatomical constraint. Conventional studies
have generated coarse cortical surface mesh or sampled some vertices from fine cortical surface mesh, to place the
dipolar  sources,  but  either  model  could  not  take  full  advantage of  the  accurate  anatomical  information  which
currently has sub-millimeter accuracy. The conventional model placed one dipolar source in each cortical patch and
estimated the dipole intensity; whereas the proposed model utilizes every cortical vertex inside a cortical patch in
evaluating a  lead field matrix and estimates the  current density of  the  patch. Since the  proposed model  can be
regarded as  a  kind of  numerical  integrations over each source  patch,  it  can consider more  accurate shapes and
orientations of the cortical patches.

If one tries to use all cortical vertices over several hundreds of thousands for the source reconstruction, two
problems can arise. First, the use of more variables strengthens the underdetermined relationship between the number
of measurements and that of unknowns, and thus it becomes more difficult to get a unique and accurate solution
without additional a priori information. The second problem is the increment of computational cost. Supposing the
numbers of decimated and original vertices are Nd and lNd, respectively, the use of the whole source space takes more
time in the order of O(l2) to calculate the matrix multiplications in Eq. (3). Besides, additional time required to
construct lead field matrix is relatively negligible compared to that for the matrix multiplications, because the process
requires relatively less increment of time in the order of O(l) when inversion of boundary element transfer matrix is
stored in a  computer  memory. In the case  of  the proposed model,  however, additional  computation time is not
significant because the number of variables does not change.

In the present study, the proposed model has been applied to realistic EEG simulations and the results have been
compared to those of conventional ones. Boundary element method considering the realistic geometry head model
was used for the forward calculations. For the verification, we generated 50 cortical patches with different sizes and
locations, and simulated time-varying EEG signals.  To be more realistic,  real  brain noise extracted from a pre-
stimulus period of a practical experiment was added to the artificial EEG signals. For the quantitative comparisons,
we adopted  a  criterion  named DF,  which can measure  how well  the  reconstructed  sources  recover the original
patches. We could see from the simulations that the consideration of area information did not improve the results as
much as we expected. However, the application of the proposed model resulted in more accurate source estimate.

The proposed model is more plausible than the conventional ones because it considers the whole cortical surface
area without any loss of anatomical information. The present study only applied a linear  inverse operator to the
inverse  estimation,  but  the  proposed  model  is  applicable  to  other  inverse  techniques  that  use  same anatomical
constraint because this model does not deal with forward or inverse calculation methods but just construction of lead
field matrix containing more accurate anatomical information. Although the simulations were performed only for
EEG, the model can be applied to MEG source estimation in the same manner.

In summary, we have used a source patch model that can consider accurate anatomical information in EEG/MEG
cortical source imaging process. The proposed model has been applied to realistic EEG simulations, and compared
quantitatively  with  conventional  ones.  The  present  simulation  results  show  that  the  proposed  model  provides
enhanced performance in reconstructing cortical activations, as compared with conventional cortical source models. It
is expected that the present model will serve as a useful means to get high resolution cortical source images in various
EEG/MEG applications.
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