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Abstract. Different non-invasive brain imaging techniques are presently available to provide images of the human
functional  cortical  activity, based on hemodynamic metabolic or  electromagnetic  measurements. However, static
images  of  brain  regions  activated  during  particular  tasks  do  not  convey  the  information  of  how these  regions
communicate with each other. Cortical connectivity estimation aims at describing these interactions as connectivity
patterns which hold the direction and strength of the information flow between cortical areas. So far, the causality
between  brain  signals  has  been  assessed by  using the  time-varying  information  derived  from hemodynamic or
electromagnetic signals recorded at the scalp or cortical level. However, the causality estimation from these brain
functional waveforms will depict a single pattern of connectivity involving several brain areas, for each time segment
or in every frequency band analyzed. Since it is well known that the brain does not produce any “single waveform”
but  rather  engages  several distributed  cortical  areas  in order to process  information,  a  question arose  about the
appropriateness of the estimation of the functional connectivity between waveforms. In particular, the question is
whether instead of estimating the causality between single waveforms derived from the different cortical or scalp
areas it is possible to estimate the causality between “spatial patterns of  brain cortical activations”. In fact,  it is
reasonable to pose the question if it could be more interesting to estimate the causality (in the sense of the Granger)
between the activation of distributed cortical systems or just observe the causality between isolated waveforms. In
this report we attempted to estimate the causality between distributed cortical systems during the execution of simple
movements in a group of normal healthy subjects. To estimate the causality between the spatial distributed patterns of
cortical activity in the frequency domains we applied a series of processing steps on the recorded EEG data. From the
high-resolution  EEG  recordings  we  estimated  the  cortical  waveforms  for  the  regions  of  interest  (ROIs),  each
representing a selected sensor group population. The solutions of  the linear inverse problem returned a series of
cortical waveforms for each ROI considered and for each trial analyzed. In each subject, the cortical waveforms were
then subjected to an Independent Component Analysis (ICA) pre-processing. The independent components obtained
by the application of the ThinICA algorithm (which combined second- and fourth-order statistics to achieve spatial
and temporal
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decorrelation and mutual independence of extracted latent (hidden) components) were then further processed by the
Partial Directed Coherence algorithm, in order to extract the causality between the spatial cortical  patterns of the
estimated data. Such couples of cortical patterns were obtained for each one of the three frequency bands employed
here; theta, alpha, and beta. The estimated cortical patterns indicated the involvement of a large network of parietal
and premotor areas in the beta band, as well as the existence of a distributed network in the theta and alpha frequency
bands that was driving consistently the right primary motor and supplementary motor areas. These results are the first
to demonstrate the involvement of a group of cortical areas that “causes” the activation of a second group of cortical
areas for a simple motor task.
Keywords:ThinICA; Distributed current density estimates; Brodmann areas; inverse problem; high-resolution EEG, Functional connectivity, Partial
Directed Coherence

1. Introduction
Nowadays, different non-invasive brain imaging techniques are presently available  to provide images of  the

human  functional  cortical  activity,  based  on  hemodynamic  (functional  Magnetic  Resonance  Imaging,  fMRI),
metabolic  (Positron  Emission  Tomography,  PET)  or  electromagnetic  (Electroencephalography,  EEG  and
Magnetoencephalography, MEG) measurements. However, static images of brain regions activated during particular
tasks do not convey the information of how these regions communicate to each other. In fact, the concept of brain
connectivity is viewed as central for the understanding of the organized behavior of cortical regions beyond the
simple mapping of their activity [Lee et al., 2003, Horwitz, 2003, David et al., 2004]. This organization is thought to
be  based  on  the  interaction  between  different  and  differently  specialized  cortical  sites.  Cortical  connectivity
estimation aims at describing these interactions as connectivity patterns which reflect the direction and strength of the
information flow between cortical areas. To achieve this, several methods have been already applied on data gathered
using both hemodynamic and electromagnetic techniques [Buchel and Frison, 1997, Gevins et al., 1989; Urbano et
al., 1998, Brovelli et al., 2002; Taniguchi et al. 2000]. Two main definitions of brain connectivity have been proposed
over these years: functional and effective connectivity [Friston, 1994]. While functional connectivity is defined as the
temporal correlation between spatially remote neurophysiologic events, the effective connectivity is defined as the
simplest  brain circuit which would produce the same temporal relationship as observed experimentally  between
cortical  sites.  As  for  the  functional  connectivity,  the  several  computational  methods  proposed to estimate  how
different brain areas are working together typically involve the estimation of some covariance properties between the
different time series measured from the different spatial sites during motor and cognitive tasks studied by EEG and
fMRI techniques [Gevins et al.,  1989; Urbano et al.,  1998; Gerloff  et al.,  1998; Jancke et al.,  2000]. So far, the
estimation of functional connectivity on EEG signals has been addressed by applying either linear and non-linear
methods  which  can  both  disclose  the  direct  flow of  information  between  scalp  electrodes  in the  time domain,
although with different computational demands [Nunez, 1995; Clifford et al., 1987; Inouye et al., 1995; Stam et al.,
2002; Stam et al.,  2003, Tononi et al.,  1994;  Quian Quiroga et  al.,  2002]. In addition, due to the evidence that
important information in the EEG signals are often coded in the frequency rather than time domain (reviewed in
[Pfurtscheller and Lopes da Silva, 1999]) attention has been focused on detecting frequency-specific interactions in
EEG or MEG signals by analyzing the coherence between the activity of pairs of structures (Mizuhara et al., 2005).
Coherence analysis does not have, however, a directional nature (i.e. it just examines whether a link exists between
two neural structures, by describing instances when they are in synchronous activity), and it does not provide directly
the direction  of  the information flow. In this respect,  a  multivariate  spectral technique called Directed  Transfer
Function (DTF) was proposed [Kaminski et al., 2001] to determine the directional influences between any given pair
of channels in a multivariate data set. This estimator is able to characterize at the same time the direction and the
spectral properties of the brain signals, requiring only one multivariate autoregressive (MVAR) model to be estimated
from all the EEG channel recordings. The DTF technique has been recently demonstrated to rely on the key concept
of Granger causality between time series [Granger, 1969], according to which an observed time series x(n) causes
another series y(n) if the knowledge of x(n)’s past significantly improves prediction of y(n); this relation between
time series is not reciprocal, i.e. x(n) may cause y(n) without y(n) necessarily causing  x(n). This lack of reciprocity
allows the evaluation of the direction of information flow between structures.

So far, the causality between brain signals has been assessed by using time varying information derived from
hemodynamic or  electromagnetic  signals  recorded at the scalp level  [Kaminski  et al.,  2001] or  estimated at  the
cortical  level  [Babiloni  et  al.,  2005;  Astolfi  et  al.,  2005].  However,  the  causality  estimation  from  these  brain
functional waveforms will depict a single pattern of connectivity involving several brain areas, for each time segment
or in every frequency band analyzed. Since it is well known that the brain does not produce any “single waveform”
but  rather  engages  several distributed  cortical  areas  in order to process  information,  a  question arose  about the
appropriateness of the estimation of the functional connectivity between waveforms. In particular, the question is
whether instead of estimating the causality between single waveforms derived from the different cortical or scalp
areas, it is possible to
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estimate  the causality between “spatial patterns of cortical brainactivations”. In fact,  it is  reasonable to pose the
question if it could be more interesting to estimate the causality (in the sense of the Granger) between the activation
of distributed cortical systems or just observe the causality between isolated waveforms. In this report, we attempted
to estimate the causality between distributed cortical systems during the execution and the imagination of simple
movements in a group of normal healthy subjects. To estimate the causality between the spatial distributed patterns of
cortical activity in the frequency domains we applied a series of processing steps on the recorded EEG data.

First, we estimated the cortical activity from the EEG recordings by using realistic head and cortical models for
each subjects. This was obtained by considering the cortical activity occurring in the Brodmann areas used to segment
the cortical models used. The cortical activities were estimated by using the solutions of the EEG linear inverse
problems as described previously [Babiloni et al., 2005; Astolfi et al., 2005].

Furthermore,  we applied Independent  Component  Analysis  (ICA) pre-processing  on the  cortical  waveforms
derived from the Brodmann areas for each subject. The application of the to the cortical waveforms derived from the
Brodmann areas returned a series of basic spatial patterns of activations as well as the temporal variation of these
patterns along the estimated cortical waveforms.

The key point of all this processing is the estimation of causality between the temporal independent components
calculated for  the cortical data by using the  DTF or Partial Directed Coherence (PDC, Baccalà and Sameshima,
2001).  The application of  the  DTF or  PDC between two different  independent  components  estimated  from the
computed cortical waveforms returned an estimation of the causality between the two distributed cortical activation
patterns.  Each  cortical  activation  pattern  represented  a  spatial  component  and  corresponded  to  an  analysed
independent component. Hence, the causality of the activation of the distributed cortical areas occurred not at the
level of single waveforms, but rather at the level of a coordinated series of cortical areas, as described by the spatial
independent components obtained by the ICA.

In this study, we propose to estimate the causality of the cortical connectivity patterns by exploiting the combined
use of ICA and DTF/PDC techniques applied to high-resolution EEG signals which exhibit a higher spatial resolution
than conventional cerebral electromagnetic measurements made over or outside of the scalp. The high-resolution
EEG technique includes the use of a large number of scalp electrodes, realistic models of the head derived from
structural magnetic resonance images (MRIs), and advanced processing methodologies related to the solution of the
linear  inverse  problem.  These  methodologies  allow  the  estimation  of  cortical  current  density  from  sensor
measurements [Babiloni et al., 2000; Grave de Peralta and Gonzalez Andino, 1999; Pascual-Marqui, 1995; He et al.,
2002].  Subsequently,  a  novel  combination of  ICA and DTF/PDC methods  was applied to the  cortical estimates
obtained from high-resolution EEG data related to a simple movement task in humans.

2. Material and Methods

2.1. The estimation of the cortical activity from high-resolution EEG recordings

High-resolution EEG recordings
Six right-handed healthy subjects participated in the study. Informed consent was obtained from each subject

after explanation of the study, which was approved by the local institutional ethics committee. For the EEG data
acquisition, subjects were comfortably seated on a reclining chair, in an electrically shielded, dimly lit room. All the
subjects gave their informed consent to participate in the study. In the present event-related experimental design, we
adopted a simple motor task consisting of repetitive self-generated overt executions (control subjects) of the right foot
dorsal flexion at the ankle. The absence of external cues was chosen in order to avoid that any part of the observed
EEG task-induced activity could be related to the perception or processing of pacing stimuli per se.  A 58-channel
EEG system (BrainAmp, Brainproducts GmbH, Germany) was used to record electrical potentials by means of an
electrode cap with sensors  placed according to the  extended 10-20 international  system. Structural MRIs of  the
subject’s head was taken with a Siemens 1.5T Vision Magnetom MR system (Germany). The EEG was sampled at
200 Hz, and 100 trials were recorded for each subject. Figure 1 presents the experimental subjects for the normal
group recorded with the high-resolution EEG cap.

Applying the tools for the estimation of cortical activity and connectivity
We estimated the cortical activity from the high-resolution EEG recordings, by using realistic head models and a

cortical  surface  model with an average of  5,000 dipoles,  which were  uniformly distributed.  The estimation was
obtained by the application of a linear inverse procedure [Rolando Grave de Peralta and Gonzalez Andino, 1999;
Babiloni et al., 2005]. Cortical activity was then estimated in ROIs generated by the segmentation of the Brodmann
areas (B.A.) on the accurate cortical model used. Bilateral ROIs considered in this analysis were: the primary motor
areas for the foot (MIF) and the lip movement (A4_Lip), the proper supplementary motor area (SMAp),
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the standard premotor area (A6), the posterior parietal areas (A7) and the cingulated motor area (CMA). The labels of
the cortical areas also contain a postfix characterizing the considered hemisphere (R, right, L, left). Such ROIs were
segmented on the basis of Talairach coordinates and anatomical landmarks available. Figure 2 presents the cortical
areas as obtained for the realistic head models generated for each subject. It is possible to note the different positions
of the same cortical areas on the cerebral surface between the subjects.

Figure 1. The normal subjects recorded in this experimental study, with the high-resolution EEG cap.

Figure 2. The cortical regions of interest (ROIs) employed in this study for the normal population investigated. Each ROI is
represented with a different color, and the used color scheme is common across the different subjects. Note that the Cyngulate
Motor Areas, located in the mesial central part of the cortical surface, are hidden in the interhemispheric scissure.
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For each time point of the recorded EEG we solved the linear inverse problem, estimated the magnitude for each
one of the thousands of dipoles used for cortical modelling. Then, we computed the average of the magnitude of such
dipoles in each ROI considered, for each time point considered. The resulting cortical  waveforms, one for each
predefined ROI, were then subjected to the ICA analysis to reveal their independent components. Since the cortical
waveforms were obtained for each single trial and recorded for each experimental subject, they were concatenated to
each other, after detrending, for consecutive analysis as described in details below.

2.2 The estimation of the functional connectivity by DTF and PDC

Multivariate Methods for the Estimation of Connectivity
Let Y(t) be a set of cortical waveforms, obtained from several cortical regions of interest (ROI) as described in

detail in the following way:

Y(t)= [y1 (t), y2 (t), …, yN (t) ]T (1)
where t refers to time and N is the number of cortical areas considered.

Let’s assume that the following MVAR process is an adequate description of the data set Y:

p

Λ(f) =∑ Y(k) e-j2πfΔtk

k = 0

 with   Λ(0) = I (2)

where Y(t) is the data vector in time, E(t)=[e1(t), …, eN]T is a vector of multivariate zero-mean uncorrelated white
noise processes, Λ(1), Λ(2), … Λ(p) are the NxN matrices of model coefficients and p is the model order. In the
present study, p was chosen by means of the Akaike Information Criteria (AIC) for MVAR processes [Akaike 1974]
and was used for MVAR model fitting to simulations, as well as to experimental signals. It has been noted that,
although the sensitivity of  MVAR performance depends on the model  order, small  model order changes do not
influence results (Franaszczuk et al, 1985; Babiloni et al, 2005).

A modified procedure for the fitting of MVAR on multiple trials was adopted [Ding et al, 2000; Babiloni et al,
2005; Astolfi et al, 2005]. When many realizations of the same stochastic process are available, as in the case of
several trials of an event-related potential (ERP) recording, the information from all the trials can be used to increase
the reliability and statistical significance of the model parameters. In the present study, both in the simulation and in
the application to real data, the data were in the form of several trials of the same length, as described in detail in the
following sections.

Once  a  MVAR  model  is  adequately  estimated,  it  becomes  the  basis  for  subsequent  spectral  analysis.  To
investigate the spectral properties of the examined process, Eq. (2) is transformed to the frequency domain:

Λ(f) Y(f) = E(f) (3)

where:

p

Λ(f) =∑Λ(k) e-j2πfΔtk

k = 0

(4)

and Δt is the temporal interval between two samples.
Eq. (3) can be rewritten as:

Y(f) = Λ-1(f) E(f) = H(f)E(f) (5)

H(f) is the transfer matrix of the system, whose element Hij represents the connection between  the j-th input and
the i-th output of the system.
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The Directed Transfer Function
The Directed Transfer Function, representing the causal influence of the cortical waveform estimated in the j-th

ROI on that estimated in the i-th ROI is defined (Kaminski and Blinowska, 1991] in terms of elements of the transfer
matrix H:

θij2( f ) = | Hij ( f )|2 (6)

In order to compare the results obtained for cortical waveforms with different power spectra, a normalization can
be performed by dividing each estimated DTF by the squared sums of all elements of the relevant row, thus obtaining
the so-called normalized DTF [Kaminski and Blinowska, 1991]:

γij2 ( f ) =  
| Hij ( f )|2

N

∑ | Hij ( f )|2
m = 1

(7)

where γij(f) expresses the ratio of influence of the cortical waveform estimated in the j-th ROI on the cortical
waveform estimated in the i-th ROI, with respect to the influence of all the estimated cortical waveforms. Normalized
DTF values are in the interval [0, 1], and the normalization condition

N

∑ γij2 ( f ) =  1
n = 1

(8)

is applied.
From the transfer matrix, we can calculate power spectra S(f). If we denote by V the variance matrix of the noise

E(f), the power spectrum is defined by

S(f) = H(f) V HH(f) (9)
where the superscript H denotes transposition and complex conjugate.

From S(f), standard coherence can be computed as:

k ij =  
| S ij ( f )| 2

S ii ( f ) S jj ( f )
(10)

Coherence measures express the degree of synchrony (simultaneous activation) between areas i and j.

Partial Directed Coherence
Partial coherence is another estimator of the relationship between a pair of signals, describing the interaction

between areas i and j when the influence due to all N-2 time series is discounted. It is defined by the formula:

| χ ij ( f )| 2 =  
| M ij ( f )| 2

M ii ( f ) M jj ( f )
(11)

where Mij(f) is the minor obtained by removing i-th row and j-th column from the spectral matrix S.

In 2001, Baccalà proposed the following factorization:

(12)

where Λ n ( f ) is the n-th column of the matrix Λ ( f ). This led to the definition of Partial Directed Coherence
(PDC) [Baccalà and Sameshima, 2001]:
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(13)

The PDC from j to i, πij(f), describes the directional flow of information from the activity in the ROI sj(n) to the
activity in si(n), whereupon common effects produced by other ROIs sk(n) on the latter are subtracted, leaving only a
description that is specifically from sj(n) to si(n).

PDC values are in the interval [0, 1], and the normalization condition

N

∑ | π ij ( f )| 2  =  1
n = 1

(14)

is verified. According to this condition, πij ( f ) represents the fraction of the time evolution of ROI j directed to
ROI i, compared to all of j’s interactions with other ROIs.

For both DTF and PDC, high values in a frequency band represent the existence of an influence between any
given pair of areas in the data set. However, an important difference is that PDC does not involve the inversion of
matrix Λ. This leads to several points. In fact, an analysis of the definition of DTF reveals that, due to this matrix
inversion, it is a linear combination of both the direct influence from one area to the other and the influence mediated
by other areas, along various cascade pathways [Kaminski et al., 2001]. This becomes immediately clear from an
example: given a three-region model, the non-normalized DTF from area 1 to area 2 is:/

θ21
2 ( f ) = | H 21 ( f )| 2 =  

| Λ 21 ( f ) Λ 33 ( f ) – Λ 31 ( f ) Λ 23 ( f ) |

| Λ ( f ) | 2
(15)

From this formula it can be noted that even if the direct influence from area 1 to area 2, Λ21( f ), is zero, θ21( f )
may still be different from zero, since there is an influence from 1 to 3 (Λ31( f ) and from 3 to 2 (Λ23( f ) ). The link
between 1 and 2 will be indicated by DTF as a causal pathway if all the causal influences along the way are non-zero.

PDC, due to the lack of the matrix inversion, behaves differently. It indicates only the existence of a direct causal
influence from area 1 to area 2. If no direct influence exists, PDC21 is virtually zero.

2.3 The estimation of the causality between the distributed cortical patterns
As described above, the estimation of the cortical activity from the EEG recordings returns a cortical current

density waveform for each ROI considered, in each trial analysed. In order to apply the ICA to the cortical current
density waveforms, the following steps have been applied:

1) Each trial has been segmented in order to extract a time segment related to the preparation of the movement to
be performed, for a duration of 1,5 seconds before the electromyographic (EMG) onset .The resulting j-th trial
will be denoted as XXj,  where XXj is the matrix composed by the number of ROIs times the number of
samples for the j-th trial, where j moves from 1 up to 100 (total number of trials).

2) The mean value for each XXj matrix has been removed. The resulting matrix will be denoted as XXavgj.

3) Each trial has been concatenated to the successive one, and a matrix XX has been obtained composed by a
number of rows equal to the number of ROIs, and a number of columns equals to the number of samples for
each trial times the number of trials considered. In formula we have X = [XXavg1, XXavg2, …,XXavg100];

4) Removal from the XX matrix of its mean value, resulting in an X matrix, that will be successively filtered
with a zero delay FIR filter at 40 Hz
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5) Application of an independent component analysis (ICA) [Cichocki and Amari, 2003] algorithm to the X
matrix, in order to obtain the demixing matrix W and the matrix of the independent components Y, according
to the following equation: Y = WX [Cichocki and  Amari, 2003]. In agreement with the notation described
above, it is also possible to compute the inverse relation from the array of the independent component Y to the
original concatenated current density waveforms X by using the mixing matrix A  which is pseudo-inverse
demixing matrix W according to the equation X = A Y. The matrix A is the matrix of the spatial patterns (in
the cortical space) which when multiplied by the time-varying loads of the independent components Y, returns
the original data. At this stage, the A matrix is not limited to particular values as the entries of the Y matrix.
Specifically,  in this study, we used the  ThinICA algorithm [Cruces-Alvarez and Cichocki,  2003; Cruces-
Alvarez et al., 2004; Bakardjian, 2004], which allowed a mixed 2nd and 4th order cumulants for ICA and
based on criteria that jointly performed the maximization of higher-order cumulants and second-order time-
delay covariance matrices. The employed simultaneous ICA extraction, which used thin SVD factorizations,
combined  the  robustness  of  the  joint  approximate  diagonalization  techniques  with  the  flexibility  of  the
methods for blind signal extraction, see section 2.5 for more details about ICA and ThinICA.

6) In order to deal  with an A  matrix having normalized values,  it  is possible to transfer  the  differences in
intensity from the A matrix to the Y component, through dividing each i-th column of the A matrix by its own
maximum value and also multiplying the i-th component of the Y matrix by the same value. This procedure
returned  a  normalized  A  matrix,  which  we’ll  call  in  the  future  Anorm,  as  well  as  a  new  independent
component matrix Y, with its values rescaled according to such maxima, which we’ll call in the future Yscal.
Note that it is still true that X = Anorm Yscal.

The procedure, as detailed above, will return an Anorm matrix that describes the mixing of the independent
spatial cortical patterns for the gathered data, as well as a matrix Yscal revealing their temporal behavior. Hence, each
i-th component of the Yscal matrix is related to the time-varying presence of the i-th spatial pattern described by the
i-th column of the Anorm matrix in the gathered EEG data, represented by the X matrix.

Now,  in  order  to  assess  the  possible  causality  relations  between  the  cortical  patterns,  we  estimated  the
connectivity values between the different independent components described by the matrix Yscal. The connectivity
values were obtained by using the DTF or PDC algorithm. In the following, the results will be presented as obtained
by the PDC algorithm, while the results from the application of the DTF algorithm were similar to those described
here.

2.4 The estimation of the causality between the patterns of the cortical activity
As described above, the application of the PDC algorithm to the Yscal matrix returned a series of  causality

patterns between the different independent components, each one related to a particular spatial pattern. The causality
patterns between the independent components were considered only if statistically significant, in agreement with the
procedure already described previously [Astolfi et al., 2005]. A statistical connection between the i-th and the j-th
components of the Yscal matrix (represented as Yi –> Yj) means that the series of cortical ROIs involved in the i-th
spatial pattern of the Anorm matrix will cause an activity in the series of cortical ROIs involved in the j-th spatial
pattern of the same matrix Anorm. In the sense of the Granger theory, the inclusion of the Yi independent components
(i.e. the  cortical areas of  the  i-th independent component)  improves the predictions of  the  time series of the Yj
independent components in the multivariate autoregressive model.

For each subject analyzed, and for each one of the four frequency bands investigated (theta (4-7 Hz), alpha (8-12
Hz),  beta  (12-30  Hz)  and gamma  (above  30  Hz)),  only  the  four  highest  connectivity links  were  used for  the
successive analysis. Such connectivity links were those with the highest statistical significance with respect to the
random values of the DTF or PDC computed by using a shuffling procedure [Kaminski et al., 2001; Astolfi et al.,
2005; Babiloni et al., 2005].

Hence, for each frequency band and every subject,  we obtained a series of  four cortical spatial patterns that
“caused” or drove other four cortical spatial patterns during the execution of the task. In particular, these patterns
were related to the preparation of the task for a time period of 1.5 seconds.

Since  the  independent  components  are  not  ordered  between  subjects,  a  possible  problem  arose  when  a
comparison of these spatial patterns between the subjects have to be performed, in order to extract inferences related
to the group behavior. In fact, it is well known that the numbering of the spatial components is not consistent between
different subjects, i.e. the component number 4 for the subject k-th may not be the same as the component number 4
for the subject j-th, and so forth. Then, it is interesting to have a tool able to couple the independent components
between subjects on the basis of their spatial patterns. This is important since the goal is to build a set of couples of
cortical spatial patterns (one that “drives” and the other that it was driven) that are common for all the investigated
populations. In order to obtain such “average” cortical pattern a series of  operations have to be performed. The
approach pursued in this study can be described in the following way:
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1) Each one of the selected spatial cortical components for the subjects of the group was transformed into a
binary representation, containing 1s or 0s, to mark whether cortical areas were activated or not activated.
Specifically, the 1s indicated normalized cortical activation measures exceeding the interval [-0,2 : 0,2].

2)

Each couple of activated causality patterns in a subject was compared with all the other couples of patterns for
all the subjects analyzed. Each comparison was made taking into account the number of cortical areas for
patterns that “caused” another one (shown in the left column in the Fig.3) and the number of cortical areas for
the cortical patterns that  were “caused” by the previous one (shown at  the right side of the Fig.3).  Such
comparisons were performed by using a correlation index.

3) A list of couples of similar spatial patterns (one for each subject) was then formed, by ranking each pattern
with the computed correlation index.

4) Then,  average  representations  of  the  coupling  between  patterns  were  obtained.  Each  of  these  averages
represented the causality links between two spatial cortical patterns in the population. For each spatial pattern,
the representations of some cortical ROIs in the following figures contain spheres, the radii of  which are
proportional to the number of subjects that  have these particular cortical  ROIs activated in the analyzed
pattern. The higher the number of subjects in the population that have activated the j-th ROI, the larger is the
radius of the sphere for such ROI in the “average” representation. The colour of the spheres also codes the
existence of the common activated ROI in the group of subjects considered. In particular, the yellow-colour
codes show the presence of the activated ROI in all of the subjects belonging to the analyzed group, and such
colour is associated with the greatest sphere size. The red colour is used to code the presence of the activated
ROI in all but one subjects belonging to the group, and the size of the sphere is smaller than for the yellow
one. The blue colour is used to code the presence of the activated ROI in all but two subjects, and the relative
size is smaller than for the red one. If the activated ROI is present in all but three subjects of the experimental
group (50% of the subjects or less), then no sphere is drawn.

Following this procedure, it is possible to obtain four “average” couples of spatial patterns for each frequency
band. Such “average” cortical patterns correspond to the time period of the preparation for the actual movement in the
normal healthy subjects.

2.5 Independent Component Analysis (ICA) and the ThinICA algorithm
ICA is  a  process  which  can  extracts  a  new set  of  statistically  independent  components  represented by  the

n-dimensional vector y(t) = Wx(t) from exploratory (observed) input data represented by the m-dimensional vector
x(t) (t = 1, 2,… , N). The extracted components correspond to estimates of hidden or latent variables in the data
sometimes called sources.  This process assumes that a time series  x(t) has an embedded mixing process of the form
x(t) =A s(t), where A denotes an unknown mixing matrix and s(t) is a vector representing unknown hidden (latent)
variables or sources. ICA can be considered as a demixing or a decomposition process which is able to recover the
original sources, i.e., y(t) = ŝ(t) through the linear transformation y(t) = Wx(t). The fact that two random variables are
uncorrelated does not also imply that they are independent. This fact is lost in using other methods such as Principal
Component Analysis (PCA). The ICA approach seeks to find such independent directions through maximization of a
suitable  cost  function  called  sometimes  contrast  function which is  a  measure  of  statistical  independence.  Such
functions can be maximized or minimized using various optimization methods, including artificial neural networks.

Independent component analysis can be considered as an extension of principal component analysis (PCA). In
PCA, the input data x(t) is decorrelated to find the components that are maximally uncorrelated according to second-
order  statistics.  PCA  gives  orthogonalized  and  normalized  outputs  according  to  the  second-order  statistics  by
minimizing the second-order moments. The principal components can still be dependent however. The problem of
independent  component  analysis or  blind source separation  of  sources mixed instantaneously can be  defined  as
follows. Let’s assume that we have available to us a set of multivariate time series {xt(t)} (i = 1, 2, ... , m). We also
assume that these time series, for example corresponding to individual EEG electrodes, are the result of an unknown
mixing process defined by
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n

xi (t) =∑aij sj (t)
j = 1

(i = 1, 2, ... m) (16)

or equivalently in compact matrix form X(t) = A S(t), (t = 1, 2, ... N), where A is an unknown mixing matrix sized m
by n, and s(t) = [s1(t), s2(t), ... , sn(t)]T are hidden (latent) components called the sources. We seek to estimate the
unknown sources sj(t) using only the observed data vector x(t) = [x1(t), x2(t), ..., xm(t)]T. The problem is to find a
demixing or separating matrix W such that y(t) = W x(t) estimates the hidden independent components. It is possible
that there could be a different numbers of sensors than sources, that is, A may not be square. If it is assumed that the
number of sources (hidden components) is the same as the number of time series or observed inputs n, then A is a
square (n by n) matrix. If W = A-1, then y(t) = s(t), and perfect separation occurs.

In practice, the optimal y will be some permutated and scaled version of s, since it is only possible to find W such
that WA = PD where P is a permutation matrix and D is a diagonal scaling matrix. In general, the ICA of a random
vector x(t) is obtained by finding a n by m, (with m ≥ n), full rank separating (transformation) matrix W such that the
output  signal  vector  y(t)  =  [y1(t),  y2(t),  ...,  yn(t)]T,  (independent  components)  estimated by y(t)=W x(t),  are  as
independent as possible.

Compared  with  the  principal  component  analysis  (PCA),  which  removes  second-order  correlations  from
observed signals, ICA further removes higher-order dependencies. Statistical independence of random variables is a
more general concept than decorrelation. Overall, we can state that random variables yi(t) and yj(t) are statistically
independent if knowledge of the values of yi(t) provides no information about the values of yj(t).  Mathematically,
mutually independence of m random variables yi(t), i = 1, ... m can be expressed by

m

p (y) =  p (y1, ... ,ym) =  Π p (y i)
i = 1

where p(y) denotes the joint probability density function (pdf) of the random variable y( t ). In other words, signals
are independent if their joint pdf can be factorized into marginal distributions.

Second order algorithms are not able to extract or separate random components without temporal structures such
as i.i.d. (independent identically distributed) components. Therefore, in this study we used the ThinICA (or Thin SVD
ICA) algorithm developed by Cruces and Cichocki (2003). The ThinICA algorithm can be considered as an extension
of lower-order algorithms since  it employs the second-order and higher-order statistics for  the estimation of  the
rotation matrix U and, consequently, of the demixing matrix W = Â-1 = UTQ. The ThinICA algorithm is able to
extract simultaneously arbitrary number of components specified by the user. The algorithm is based on a criterion
that jointly performs the maximization of several third- and/or fourth-order cumulants of the outputs and/or second-
order time-delayed covariance matrices, i.e. on the maximization of the following contrast function:

n

J ( U ) =∑∑ αr [Cum(y i(t 1), y i(t 2),..., y i(t p))]2

j = 1 t

(17)

subject to the constraints U T U = I n , where α τ are weighting coefficients (typically, equal to 1) and Cum means
cumulants for different time tuples t = {t1, t2, ... tp,}. In practice, we have used only the 2-nd, 3-rd and 4-th order
cumulants (Cruces and Cichocki, 2003; Cichocki and Amari, 2003).

The contrast function employed for ThinICA combines the robustness of the joint approximate diagonalization
techniques with the flexibility of the methods for blind signal extraction. Its maximization leads to hierarchical and
simultaneous  ICA  extraction  algorithms  which  are  based  on  the  thin  SVD  factorizations.  The  practical
implementation of  the ThinICA algorithm is available  on the  following web page: http://www.bsp.brain.riken.jp
/ICALAB/.

After extracting the independent components or performing blind separation of signals (from the mixture), we
can examine the effects of discarding some non-significant components by reconstructing the observed EEG data
from the  remaining  components.  This  procedure  is  called deflation  or  reconstruction,  and allows us  to remove
unnecessary (or undesirable) components that are hidden in the mixture (superimposed or overlapped EEG data). The
deflation algorithm eliminates one or more components from the vector y(t) and then performs the back-propagation
xr(t) = W†yr(t), where xr(t) is a vector of reconstructed input (exploratory) data x(t), W† = Â is a generalized pseudo
inverse matrix of the estimated demixing matrix W, and yr(t) is the vector obtained from the vector of independent
components y(t) after removal of all the undesirable components (i.e., by replacing them with zeros).
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ICA is  a  process  which  statistically  reduces  a  possibly  very  multidimensional  complex  data  set  into  sub-
components which are statistically independent, and which are expected to capture most of the useful information
regarding the underlying events. Since properly estimated ICs are statistically independent from each other, they can
be used to create a new set of explanatory variables in order to investigate brain signal relationships more efficiently
than it would be possible with the unprocessed data, and can be used by exploratory techniques like DTF or PDC.

3. Results
Following the methodology presented above, we estimated from the high-resolution EEG recordings the cortical

waveforms at the ROIs selected for all the group population. The solution of the linear inverse problem returned a
series  of  cortical  waveforms  for  all  ROIs  considered  and  for  all  trials  analyzed.  In  each  subject,  the  cortical
waveforms were then subjected to a  ThinICA processing,  according to the  procedures depicted in the Methods
section. The independent components obtained by the application of the ThinICA algorithms were then processed by
the PDC algorithm, in order to extract the directed causality between the spatial cortical patterns of the estimated
data. Such couples of cortical patterns were obtained for each one of the four frequency bands employed in this study.

As an example of the obtained results, Fig. 3 demonstrates the four highest links between the spatial patterns
computed for the subject ALFA in the beta frequency band. Each square represents the view of the cortex from the
above, nose at the bottom. The causal relationship is expressed between the spatial cortical patterns (squares) located
in the same row, so that the left spatial pattern is shown causing the right one. In other words, a spatial cortical pattern
related to an independent component located in the left column “causes” the spatial cortical  pattern in the right
column at the same. The flat-coloured areas in each square depict the cortical segmentation of the ROIs analyzed in
this  task.  The light-purple  flat-colored  ROI  corresponds  to  parietal  cortical  area  A7,  the  yellow one  –  to  foot
movement area (MIF), the orange ROI - to the primary motor area for the lip movement, the sky blue ROI – to
supplementary motor area (SMA), the dark blue ROI – to A6, and the green ROI – to the cingulate motor area
(CMA). The colored spheres located in some flat-coloured areas represent the intensity of the cortical activation, as
estimated by the ICA (columns of the Anorm matrix). In that way, Fig. 3 presents the strong causal relation in the
beta band between the spatial cortical patterns returned by the application of the ICA to the estimated cortical data for
subject ALFA. The causality between the spatial cortical patterns in this frequency band is statistically significant at a
threshold of 1%.

Note that as the intensity of the spatial pattern of each square is running between 1 and -1, being normalized with
the amplitude values moved into the temporal waveforms of the independent components (from the j-th column of the
Anorm matrix to the j-th component of the Yscal matrix). Where there are no spheres, no significant cortical activity
has been computed. Fig. 4 shows the spatial cortical patterns between the independent components for another normal
subject investigated. The issue is now the generation of a series of cortical causality patterns that are “common”
between the different subjects.

Figure 3. The figure presents a list of the four strongest links between the spatial patterns computed for the subject ALFA in
the beta frequency band. Each square represents the view of the cortex from the above, nose at the bottom. The causal relation is
expressed between the spatial cortical patterns (squares) located in the same row with the left spatial pattern causing the right
one. In other words, a spatial cortical pattern related to an independent component located in the left column “causes” the spatial
cortical pattern in the right column at the same row. This causality is expressed by the blue arrow, moving from the left pattern and
pointing to the right one. The flat-coloured areas in each square depict the cortical segmentation of the ROIs analyzed in this task.
The sphere located inside each flat-coloured area represents the intensity of the cortical activation, as reflected by the results from
the ICA processing (column of the A norm matrix). The figure presents the strong causal relation in the beta band for the subject
ALFA between the spatial cortical patterns returned by the application of the ICA to the estimated cortical data. The causality
between the spatial cortical patterns in this frequency band is statistically significant at a threshold of 1%. The head below the
cortical patterns shows the 3D view corresponding to the square connectivity patterns above.
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Figure 4. Same conventions as in Fig. 3 but for the subject ARGI in the beta band.

We applied an appropriate algorithm to locate the similarities between the computed couples of cortical patterns
in the different subjects, and the “average” couples of spatial patterns in each frequency band were then generated.
Successive figures illustrate these “average” causality patterns due to the preparation for an active foot movement in
the different frequency bands analyzed for the group of normal subjects. As already described in the method section,
here the yellow spheres indicate that all the subjects in the group have the same ROI engaged in the causality link
between cortical patterns, while the red spheres on a ROI indicate that all the subjects but one have the same ROI
activated, and the black spheres illustrate that all the subjects but two have the same ROI activated. In the following,
only results from cortical causality patterns that presented a spatial correlation of more than 70% are displayed in the
different frequency bands.
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Fig. 5 shows a cortical pattern in the theta band having 79.9% of correlation between all the subjects.

Figure 5. First average cortical causality pattern in the theta band for a group of normal subjects. Same conventions used as
in  the  previously  presented  figure.  Correlation  index  between  the  subjects  was  79.9%.  The  realistic  head  below  shows  the
equivalent representations on the real cortical surface. The yellow color codes the presence of the ROI in all the subjects of the
tested population (6/6), the red color - in 5 out of 6, and the black color - in 4 out 6 subjects.

Taking into consideration the yellow and the red spheres, which indicate the ROI activations in all (yellow), or all
but one (red) subject in this study, it seems that in the theta frequency band there was a drive from a cortical network
involving the right Cingulate Motor Area (CMA), right foot movement area (MIF), as well as the right parietal area
(A7) and supplementary motor area (SMA) toward the right MIF and SMA. Fig. 6 exhibits another independent
cortical coupling pattern in the theta frequency band for the analyzed group of subjects.

Figure 6. Second average cortical causality pattern between the independent spatial componenst in the theta frequency band.
Correlation between subjects was 72%. Same conventions are used as in the previous figure. Note that the red sphere in the right
cyngulate area in the target cortical pattern (on the right) is almost completely hidden from the cortical surface in the realistic
reconstruction of the cortex presented here.

In this pattern the MIF bilaterally as well as the right premotor area (A6) were driving the right CMA. No other
cortical coupling patterns were statistically significant among the subjects analyzed with more than 70% correlation
index in the theta frequency band.

The analysis of the normal subjects exposed a coupling pattern in the alpha frequency band with a correlation
index equal to 79%. The pattern is presented in Fig.7.
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Figure 7. Causality pattern for the normal subjects in the alpha band. Correlation index was equal to 79.7%.

This  pattern  revealed  that  the  activation  of  the  primary  motor  area  of  the  foot  bilaterally  (MIF),  with
contributions from the right parietal areas (A7) and CMA, were driving the right MIF and the SMA cortical areas.

We observed two cortical causality patterns over the 70% threshold of the correlation index in the beta frequency
bands for the normal subjects in this study. In Fig. 8 the first pattern is shown, which had a correlation index of 71%.

Figure 8. First causality pattern revealed in the normal subject population in the beta frequency band. Correlation index was
71%. Same conventions are used as in the previous figure.

Such a pattern suggests a major involvement of the primary left foot area and the cyngulate motor area in the
driving of SMA, bilaterally. The second pattern available for normal subjects in the beta band is characterized by a
slightly higher correlation index than before, which means a good agreement between the subjects. In particular, the
Figure 9 presents the pattern with a correlation index of 72%.

Figure 9. Second causality pattern revealed in the normalsubject population in the beta frequency band. Correlation index
was 72%.
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This second causality pattern in the normal group suggests that the primary left foot motor area was driving the
activity in the primary motor areas bilaterally.

4. Discussion
The methodological approach presented here attempts to describe the generation of a set of mathematical tools

able to depict the existence of distributed cortical networks that drive, or “cause”, in the sense of Granger theory, the
activity of other distributed cortical networks, as revealed by analysis of data from high-resolution EEG recordings in
humans. This methodological approach uses high-resolution techniques for the estimation of the cortical activity in
regions of interest from EEG recordings. The computation of realistic head models for each subject investigated is
mandatory in order to generate accurate models of the head and the cortex. By using this technology we were able to
estimate the cortical current density in particular ROIs depicted on the realistic model of the cortex and coincident
with the Brodmann cortical areas for each subject.  Consecutively, the application of ThinICA algorithms for the
estimation of  independent  cortical  activations  in the  ROIs  returned a  set  of  time-varying  waveforms (temporal
independent components) as well as a series of spatial patterns of activations (spatial independent components) that
could be further processed. In particular, we analyzed the causal relationship between the independent components in
the time domain, by using the established algorithms for the estimation of functional connectivity such as the DTF or
PDC to unveil the causality between the ThinICA waveforms. In this way, it was possible to observe patterns of 
distributed cortical sources that “caused” in the sense of the Granger theory other patterns of distributed cortical
sources  in different  frequency  bands.  This  means  that  the  inclusion of  a  particular  set  of  waveforms  from the
“driving” cortical patterns improved the prediction of the “driven” cortical patterns in the multivariate autoregressive
modelling. The presented approach describes how cortical patterns could drive other cortical patterns, by using the
concept that such patterns are “independent” in the sense provided by the application of an independent component
analysis to the cortical current density estimations. Specifically, the ThinICA method [Cruces-Alvarez and Cichocki,
2003; Cruces-Alvarez et al.,  2004; Bakardjian, 2004] was used in order to extract information about the cortical
connectivity. In a previous similar approach, Miwakeichi and coworkers (Miwakeichi et al., 2004, 2005) attempted to
decompose the space time-frequency components of  the  EEG during cognitive tasks with the aid of  an analysis
method called parallel factor analysis (PARAFAC).

Here, the results were provided for a group of normal subjects, performing a real foot movement and the cortical
patterns elicited by the above described procedure seems to indicate the existence of a global distributed network in
the theta and alpha frequency bands that was driving consistently the right primary motor and supplementary motor
areas. In fact, it was possible to observe that the areas activated in all but one subject of the normal population were
similar in the theta and alpha band, in both the driving and in the driven networks. The existence of such networks
was  already  underlined  by  previously  existing  literature  on  the  simple  movements  in  humans  [reviewed  in
Pfurtscheller and Lopes da Silva, 1999]. However, the simple class of movements investigated here has been chosen
because their spatial details were known in advance, thus reducing the uncertainty about the possible results which
could be expected. In that way, we were able to test better the proposed methodology that combined independent
component analysis (ICA) and functional connectivity estimates.

It is worth of noting that the Granger causality between the cortical areas estimated by the DTF and PDC is not
necessarily linked to an increase in the energy or in the amplitude of the potentials of the activated cortical areas. This
is due to the fact that the latter observable variables are linked to the synchronized behaviour of the cortical neurons,
while the hemodynamic and the metabolic requirements are not [Nunez, 1995; Babiloni et al., 2005]. In fact, the EEG
amplitude generated by a patch of cortical tissue, in which only 1% of the neurons discharge synchronously, is 30
times greater than the one produced by the asynchronous discharge of the remaining 99% [Nunez, 1995; Babiloni et
al., 2005]. However, the same is not true for the hemodynamic requirements that are rather linked to the firing rate of
the same neurons rather than to their firing synchronization.

Another point that should be taken into account, is that the individual spatial components presented in this study
are “independent”  only  in the  sense  provided  by the  ThinICA algorithm, while  there  is no assurance that  such
networks  have  a  precise  physiologic  meaning.  However,  we  propose  that  this  assumption  could  be  used  as  a
reasonable working hypothesis in order to enhance the features and the phenomena related to the behaviour and
cognition in humans.  The methodological  approach  described  in  this study could be  used in  a  broader  way  to
investigate  not  only  the  connectivity  between  other  cortical  areas,  but,  if  faster  PDC and  DTF algorithms  are
developed, also to contribute in a novel way to the formation of an advanced Brain-Computer Interface (BCI) with
increased number of commands (degrees of freedom) and with improved reliability.
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