
 

Abstract—We propose to use Twomey regularization to reduce 
the distortion effects due to fMRI invisible sources in fMRI-
constrained cortical current density estimation. Computer 
simulation was conducted based on a concentric 3-spherical 
head model. Our proposed method, as well as minimum norm 
and fMRI-EEG integrated Wiener estimation, were 
respectively used to image the source distribution over a 
spherical cortical dipole layer. The performances of these three 
methods were evaluated both qualitatively and quantitatively. 
The results show that, at SNR=5, Twomey regularization can 
reduce the “point spread” from fMRI invisible sources by 34% 
compared with Wiener estimation, without losing the merit of 
having much lower point spread from fMRI visible sources 
than minimum norm solution. The present study suggests that 
applying Twomey regularization can improve the reliability of 
multimodal cortical imaging against the misspecifications 
between EEG and fMRI.  
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I.  INTRODUCTION 
 

Tremendous efforts have been made to combine the 
complementary information from EEG (or MEG) and fMRI 
for high-resolution spatiotemporal mapping of brain activity. 
A common strategy for fMRI-EEG integration is to use the 
results of fMRI analysis as a priori knowledge for imaging 
the continuous distribution of EEG sources over the entire 
cortical surface, namely fMRI-constrained cortical current 
density estimation (which we shall call cortical imaging 
subsequently) [1-3]. Considering the close coupling between 
local hemodynamic response and neural activity, fMRI 
“hotspots” (locations with significant hemodynamic change) 
are preferred in fMRI-constrained cortical imaging, which 
can be accomplished by encoding the fMRI spatial 
information into the source covariance matrix and 
constructing an optimal linear estimator in the form of 
Wiener filter [1,2]. Previous simulation and experimental 
studies have demonstrated the importance of using fMRI 
constraints in enhancing the spatial resolution of EEG- or 
MEG-based cortical imaging, and applications of this 
method have already advanced our understanding of the 
spatiotemporal pattern of brain activation and connectivity 
underlying perception, motion and cognition [2-5]. 

However, considering the facts that EEG (or MEG) and 
fMRI measure physically different aspects of brain activities 
and that they usually involve a variety of experimental setup 
and complicated mathematical processing procedures, there 
are reasons to expect possible misspecifications between 
multimodal signals, in particular the presence of fMRI 

invisible (missing) sources (i.e., generators of 
bioelectromagnetic signals that are not detected by fMRI). 
Previously, Liu et al systematically discussed this issue and 
concluded that the estimation error as measured by 
“crosstalk” metric is substantially higher for fMRI invisible 
sources than for fMRI visible sources [2]. Their studies also 
suggest applying a 90% partial fMRI constraint without 
completely excluding the possibility of non-fMRI locations 
in order to reduce such distorting effects, but fMRI invisible 
sources are still considerably underestimated or even 
eliminated especially when the recorded bioelectromagnetic 
signals are noisy [2,6]. 

In this paper, we propose to use a modified Tikhonov 
technique, known as Twomey regularization [7], to correct 
fMRI-biased source estimates from being distorted by the 
presence of fMRI invisible sources. Previously, similar 
concept has been adopted to include the constraint of time 
progress in electrocardiography inverse problem [8]. In our 
study, the fMRI-constrained solution obtained through 
Wiener estimator is only used as the initial estimate of 
cortical current density, and is subsequently adjusted by 
fitting it to the EEG data again without fMRI constraints by 
using Twomey regularization in an attempt to produce a 
“better” solution. We evaluate the efficacy of this proposed 
approach in both quality and quantity through computer 
simulation based on three-spherical head model. All the 
simulations and discussions are in the context of EEG and 
fMRI, but the approach is also applicable to integration of 
MEG and fMRI or PET respectively.  
 

II.  METHODS 
 
A.  Cortical Imaging 

 Cortical current density estimation [9], known as an 
EEG inverse problem, is to solve the following linear 
equation: 
 bAxy +=               (1) 
where y is the vector of instantaneous EEG recordings, x is 
the vector of unknown dipole moments, b is the noise 
vector, and A is the transfer matrix. 

If a priori information exists about the covariance 
matrix of source and noise, the optimal linear inverse 
operator W can be written as Eq(2): 

( ) 1−
+= CARARAW TT                             (2) 

where C is the noise covariance matrix and R is the source 
covariance matrix [1,2].  
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The integration of EEG and fMRI works under the 
hypothesis that the regions with great BOLD-fMRI 
activation have larger possibility of being electrically active 
over the time period of interest, which suggests that we can 
use fMRI spatial information to bias the EEG inverse 
solution to those locations of significant BOLD response. 
Here, we adopt a 90% partial fMRI weighting as first 
proposed by Liu et al in 1998 [2], simply setting the 
diagonal elements of R to a nonzero value r only for those 
dipoles whose locations are visible in fMRI images, and 
other diagonal elements are set to r1.0 , leaving all the off-
diagonal elements equal to 0. Although it would certainly be 
preferable to have a more precise and quantitative model to 
derive dipole source covariance from the fMRI data, 
unfortunately, at this time the physical and physiological 
basis that accounts for the correlation between fMRI signal 
and neural electrical activity is not yet well understood.  

Clearly, the source covariance matrix R is a function 
of r , whose value can be uniquely determined by satisfying 
Eq(3): 

 ( ) ( )CtrARAtr T 2γ=               (3) 
where )(⋅tr is the trace of a square matrix andγ is the signal-
to-noise ratio (SNR) of the recorded scalp potential. In 
practice, both γ and C can be estimated from EEG 
experimental data. Eq(3) requires that the source variance 
derived from fMRI data must be compatible with the signal 
variance estimated from EEG measurements.  

Once the value of r is chosen, fMRI-constrained current 
density estimation can be obtained via Eq(4): 

( ) 1    where, −
+== CARARAWyWx TTfMRIfMRIfMRI      (4) 

 
C.  Twomey Regularization 

Although using fMRI spatial constraints for EEG 
inverse problem has a sound physiological basis, one might 
expect that the fMRI hotspots may not cover all the current 
sources activated at a given instant, giving rise to fMRI 
invisible sources, which are always underestimated in fMRI-
constrained cortical imaging. We attempt to correct such 
distortion by means of Twomey regularization. Instead of 
imposing constraints on the magnitude of the solution or on 
its derivatives, this method minimizes the difference 
between the desired solution x and a rough estimate fMRIx , as 
well as the residual error in the least square sense. Hence, 
the objective function becomes 
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Here, fMRIx is the source vector obtained through the 
linear inverse operator fMRIW that incorporates fMRI spatial 
information as described above. We can see that the fMRI 
spatial constraint has been partially weakened, which yields 
the robustness of the estimated solution in the face of the 
possible fMRI misspecifications. If λ , the regularization 
parameter that balances the two terms in the cost function, is 
chosen to be a large value the solution is forced to be very 

close to fMRIx , and it should come as no surprise to expect 
that the solution is dominated by fMRI spatial constraint and 
is still sensitive to fMRI invisible sources. On the contrary, 
ifλ is small, the solution tends to shift away from fMRIx in a 
way to reduce the residual norm, as a result, the source 
estimation has chance to be corrected against the influence 
from fMRI-EEG mismatches through better fitting to EEG 
recordings. And if λ is virtually close to zero, then the 
solution turns to a purely least square inverse solution, 
suffering from unstableness and low spatial resolution. 
Clearly, the trade-off is controlled byλ . 

In our study, the objective function was minimized with 
respect to an inequality constraint which restricts the 
maximum deflection from the initial estimates.  
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And, Hebden-Newton iteration method was employed to 
find the optimal value ofλ [10].  

Givenλ is known, the solution to (5) is 

( ) ( )fMRITT
T xyAIAAx λλ ++=

−1          (7) 
where yWx fMRIfMRI = . In fact, this solution is still a linear 
inverse solution and the inverse operator is 
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D.  Computer Simulation 

In our computer simulation, the performance of the 
proposed method, abbreviated as Twomey, was examined 
both qualitatively and quantitatively by comparing with 
minimum norm approach [11] and fMRI-EEG integrated 
Wiener estimation without Twomey regularization, denoted 
as MN and Wiener respectively. The simulation was 
conducted on an inhomogeneous concentric 3-spherical 
volume conductor model, which is a reasonable 
simplification of actual head, with radii of skin, skull and 
dura mater being 10cm, 9.2cm and 8.7cm respectively. The 
conductivities of the scalp and the brain were taken as 1.0 
and that of the skull as 0.0125. The cortical layer over which 
1280 radial dipoles were evenly disposed was also 
simplified as a spherical surface with radius equal to 0.85.  

At a single time point, either 5, 10, 15 or 20 point 
sources at upper hemisphere of cortical layer were randomly 
chosen to be activated. To simulate fMRI areas of 
activation, some of these sources had corresponding fMRI 
activation with a fixed volumetric extent (1cm radius), while 
a varying number (1, 2, 3 5, 7…) of other point sources that 
do not appear in fMRI activation map behave as fMRI 
invisible sources (or missing sources). EEG measurements 
were first generated by means of the analytical forward 
model and 128 electrodes over the upper hemisphere of 
scalp surface. Subsequently, additive Gaussian white noise 
was added to the simulated EEG signals with a fixed SNR 
equal to 5, which is a value consistent with typical EEG 
experiments. 



 

Due to the linearity of both the forward and inverse 
problem, a measure of estimation error defined as “point 
spread” can be calculated for each source location. 
Mathematically, 
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where ( ) jiWA describes the sensitivity of the estimate at a 
location j to activity at location i . Point spread reflects the 
spatial blurring of the true activity at any given position. A 
location with lower point spread has a smaller spatial extent 
and higher estimation accuracy. 

Three source imaging methods (MN, Wiener and 
Twomey) were used to estimate the current density 
distribution over the cortical layer. For each different 
condition defined by the total number of sources and the 
number of fMRI invisible sources, the random placement of 
point sources and fMRI areas were repeated for 100 times. 
The averages of point spread from fMRI invisible sources 
and from fMRI visible sources were respectively calculated 
to compare the performance of different inverse methods.  
 

III.  RESULTS 
 
Fig. 1 illustrates an example of cortical current density 

(CCD) results reconstructed respectively through minimum 
norm approach, Wiener estimation and our proposed method.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Five radial dipoles with unitary strength were randomly 
sampled from the upper hemisphere of the cortical layer. 
fMRI activation map was simulated to cover four of the five 
sources, leaving one to be an fMRI missing source. From 
Fig. 1.B), MN tends to produce extended areas of current 
density so that two close dipoles can hardly be differentiated 
from the reconstructed CCD map. Incorporating fMRI data 
can greatly enhance the spatial resolution, but the fMRI 
invisible source is considerably underestimated as shown in 
Fig. 1.C). After applying Twomey regularization, the 
reconstructed CCD distribution has equally high resolution 
for fMRI visible sources as that in Wiener estimation, and it 
also reveals much stronger activity associated with fMRI 
invisible sources.    

 
 

 
 
 

Fig. 2 shows the average point spread from fMRI 
invisible sources as a function of the number of missing 
sources and the number of total sources at SNR equal to 5. 
In Wiener estimation, the point spread from fMRI invisible 
sources is substantively higher than that in MN solution. 
Twomey regularization performed on the basis of the result 
of Wiener estimation always improves the estimation 
accuracy for missing sources, especially when the total 
number of sources is 5 or 10, the point spread from fMRI 
invisible sources is comparable with that in MN. But when 
more sources (such as 15 or 20) are activated at the same 
time, fMRI missing sources are still underestimated 
compared with MN solution. Averaging among different 
source configurations, Twomey regularization reduces the 
point spread from fMRI invisible sources by about 34% 
relative to Wiener estimation.  

 
 

 
IV. DISCUSSION 

Fig. 2. The average point spread from fMRI invisible 
sources vs. the number of missing sources and the 
number of total sources 

A) fMRI Activation Map B) MN 

C) Wiener D) Twomey 

Fig. 3. The average point spread from fMRI visible 
sources vs. the number of missing sources and the 
number of total sources  

Fig. 1. A) Five radial dipoles (one is fMRI invisible 
source) and the simulated fMRI activation map. B) 
Cortical current density (CCD) distribution estimated by 
minimum norm approach. C) CCD distribution by Wiener 
estimation. D) CCD distribution after applying Twomey 
regularization. 



 

Fig. 3 shows the average point spread from fMRI visible 
sources. Wiener and Twomey end up with almost identical 
point spread from fMRI visible sources, which keeps 
unchanged with respect to different numbers of total sources 
and missing sources. Clearly, the use of Twomey 
regularization does not influence the merit of fMRI-EEG 
integration in providing high-resolution reconstruction of 
fMRI visible sources.  

 
IV.  DISCUSSION 

 
Integration of fMRI and EEG holds the promise to 

achieve high-resolution spatiotemporal mapping of brain 
activities. However, the presence of fMRI invisible sources 
leads to distorted current density reconstruction. In our 
present study, Twomey regularization was applied to correct 
such distortion effects. It has been clearly shown in the 
computer simulation that Twomey regularization, which can 
be regarded as a post-processing of existing fMRI-EEG 
integration algorithm, greatly reduces the point spread from 
fMRI invisible sources at SNR equal to 5 without affecting 
the estimation accuracy for fMRI visible sources.   

Although applying Twomey regularization can alleviate 
the distortion due to fMRI invisible sources, our simulation 
results also show that point spread from fMRI invisible 
sources are still higher than from fMRI visible sources, and 
even higher than the point spread in minimum norm 
solution. But considering the dominant advantage of high-
resolution estimation of fMRI visible sources, the overall 
performance of fMRI-EEG integrated cortical current 
density estimation is superior to that of using EEG data 
alone, as long as fMRI spatial information, in general, 
agrees with locations of with neural activity.   

The simulation study is based on the 3-spherical head 
model. Certainly the realistic geometry boundary element 
model (BEM) or the finite element model (FEM) are more 
preferable in order to take more practical circumstances into 
account. However, the three-spherical model is a widely 
accepted simplification of human head volume conductor. It 
also allows us to focus on the inherent mathematical aspects 
of this multimodal neuroimaging problem.  

In the present study, EEG measurements were simulated 
at SNR equal to 5. In practical EEG experiments, SNR 
depends on the instrumentation and neural tasks specific to a 
particular study. In our future research, we will conduct the 
simulation with varying level of SNR.  
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