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Nannan Cao1, İmam Şamil Yetik1, Arye Nehorai1, Carlos H. Muravchik2, and Jens Haueisen3

1 Department of Electrical and Computer Engineering, University of Illinois at Chicago, IL, USA
2Departamento de Electrotecnia, Facultad de Ingenierı́a, Universidad Nacional de La Plata, Argentina

3Neurological University Hospital, Philosophenweg 3D-07740 Jena, Germany

Abstract— We develop three parametric models for
electroencephalography (EEG) to estimate current sources
that are spatially distributed on a line. We assume a realistic
head model and solve the EEG forward problem using the
boundary element method. We present the models with
increasing degrees of freedom, provide the forward solutions,
and derive the maximum likelihood estimates as well as
Cramér-Rao bounds of the unknown source parameters. A
series of experiments are conducted to evaluate the applicability
of the proposed models. We use numerical data to demonstrate
the usefulness of our line-source models in estimating extended
sources. We also apply our models to the real EEG data of N20
response that is known to have an extended source. We observe
that the line-source models explain the N20 measurements better
than the dipole model.

Keywords — EEG, extended source modeling, Craḿer-Rao
bounds

I. I NTRODUCTION

Electroencephalography (EEG) is a non-invasive technique
to analyze the spatial and temporal activities in the brain.
It has a high temporal resolution on the order of a few
milliseconds and can be used in clinical applications [1] as
well as neuroscience [2]. The EEG inverse problem consists
of inferring the locations and signals of the underlying neural
activities from the electric potentials measured on the scalp
with a sensor cap. It is ill-posed, and prior constraints need to
be applied to obtain a unique solution [3].

Choosing an appropriate source model is an important step
in solving the inverse problem. Most often, it is assumed
that the source is small compared with its distances to the
sensors and thus a current dipole is used to model it [4], [5].
Clearly, this approach is valid only if the electric activity is
confined to a very small area. Multiple dipoles might be useful
for modeling more separated and individually concentrated
sources, where it is critical to obtain a correct estimate of
the number of sources, and the estimation performance will
degrade if the electric activities are spread over a large area
[3]. Distributed source models reconstruct the brain activ-
ities on a 3-D grid where each point is considered as a
possible location of a current dipole source, therefore the
restriction on the number of dipoles can be removed [3],
[6]. However, this approach is highly underdetermined and
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Fig. 1. Illustration of the three line-source models. (a) CRCM model, (b)
VPCM model, (c) VPVM model. See Section II for more details.

has a high computational cost. The ill-posed problem can be
tackled by using regularization techniques [7] and iterative
focalization approaches [8], but these methods still have high
computational load for sophisticated source models [6].

In this paper, we present three parametric line-source mod-
els for EEG assuming a realistic head model, extending our
previous work on magnetoencephalography (MEG) source
modeling [9]. In Section II, we describe the line-source models
and the corresponding EEG forward models in a kernel-
matrix form. In Section III, we derive the maximum likelihood
estimates (MLEs) and the Cramér-Rao bounds (CRBs) of the
unknown parameters. We give numerical examples in Section
IV and conclude this paper in Section V.

II. SOURCE AND MEASUREMENTMODELS

We present below three parametric line-source models with
increasing degrees of freedom and provide the EEG forward
models in a uniform kernel-matrix form.

A. Line-source Models

Constant-radius Constant-moment (CRCM) Model: In this
model, the source position is an arc with an arbitrary orien-
tation on a spherical surface: it has a fixed distance from the
head center, its azimuth varies within a certain interval, and



its elevation changes linearly with the azimuth. The source
moment is assumed to be uniformly distributed along the arc;
see Fig. 1a. Using spherical coordinates withp representing the
distance from the center,ξ the elevation, andϕ the azimuth,
we have

J(r, t) = q(t)δ(p− p0)δ(ξ − ξ0 − ρϕ)
×[u(ϕ− ϕ1)− u(ϕ− ϕ2)], (1)

q(t) = [qx(t), qy(t), qz(t)]T , (2)

wherep0 is the fixed radius,ϕ1 and ϕ2 the azimuth limits,
and ξ0 the constant elevation. The slopeρ determines the
source orientation, andu(ϕ) is the unit step function defined
as u(ϕ) = 1 for ϕ > 0 and u(ϕ) = 0 for ϕ ≤ 0.
Thus, in this model the unknown position parameter vector
is θp = [p0, ξ0, ρ, ϕ1, ϕ2]T .
Variable-position Constant-moment (VPCM) Model: This
model provides more degrees of freedom for the source
position than the CRCM model: the source position is allowed
to be a parametric curve in 3-D space instead of an arc on a
spherical surface; see Fig. 1b. We represent the source position
in Cartesian coordinates as

p(s) = [px(s), py(s), pz(s)]T , s ∈ [s1, s2], (3)

wheres is the curve parameter with limitss1 ands2. Accord-
ingly, the source current density becomes

J(r, t) ={
q(t) r = [px(s), py(s), pz(s)]T , s ∈ (s1, s2),
0 elsewhere,

(4)

q(t) = [qx(t), qy(t), qz(t)]T . (5)

Variable-position Variable-moment (VPVM) Model: This
is the most general model: the source position consists of a
parametric curve and the source moment is allowed to vary
along the position; see Fig. 1c. Hence, the current density is

J(r, t) ={
q(s, t) r = [px(s) py(s) pz(s)]T , s ∈ (s1, s2),
0 elsewhere,

(6)

q(s, t) = [qx(s, t), qy(s, t), qz(s, t)]T . (7)

B. Measurement Model

We use the boundary element method [5], [10] to solve the
EEG forward problem for a realistic head model. We pose
the quasi-static Maxwell’s equations as 2-D integrals on all
inter-layer surfaces in the head and tessellate each surface
into small triangular elements. We approximate the electric
potentials by a linear combination of basis functions and solve
the boundary integrals using the weighted residual technique.
We have shown in [11] that for each source model, considering
K independent trials andNt time samples, the measured
potentials at timet in the kth trial can be written as:

yk(t) = A(θp)m(t) + ek(t), t = 1, . . . , Nt, k = 1, . . . ,K,
(8)

where the vectorθp represents the source location parameters,
m(t) the moment parameters,yk(t) the measurements,A(θp)
the array response matrix, andek(t) the additive noise.

The termsA(θp), θp, and m(t) assume different expres-
sions for different line-source models; see [11] for more
details. Furthermore,A(θp) is always in the form of

A(θp) = HE(D + H)†V (θp), (9)

where “†” represents the pseudoinverse. Each entry of matrices
HE, D and H is a surface integral on a certain tessellation
element, depending only on the EEG sensor configuration and
the head geometry. Therefore, source parameters only appear
in V , which is desirable for reducing the computational cost.

III. M AXIMUM L IKELIHOOD ESTIMATES AND

CRAMÉR-RAO BOUNDS

We use the maximum likelihood method to estimate the
source parametersθp andm(t). Assuming zero-mean Gaus-
sian noise that is spatially and temporarily uncorrelated, the
MLE of θp is [4], [9]

θ̂p = argmin
θp

Nt∑
t=1

−ȳ(t)T P (θp)ȳ(t), (10)

where

ȳ(t) = 1/K
K∑

k=1

yk(t), (11)

P (θp) = A(θp)[A(θp)T A(θp)]−1A(θp)T . (12)

The MLE of m(t) is

m̂(t) = [A(θ̂p)T A(θ̂p)]−1A(θ̂p)T ȳ(t). (13)

The Craḿer-Rao bound is a lower bound on the covariance
of any unbiased estimator. It is independent of the algorithm
used for the estimation and thus establishes a universal per-
formance limit [12]. Let θ = [θT

p ,m(1)T , . . . ,m(Nt)T ]T

represent all the unknown source parameters,θ̂ be an unbiased
estimator ofθ, andI(θ) denote the Fisher information matrix
(FIM). The Craḿer-Rao inequality establishes that

E{(θ − θ̂)(θ − θ̂)T } ≥ CRB(θ) = I−1(θ). (14)

For the measurement model (8), assuming zero-mean Gaus-
sian noise with covariance matrixΣ = σ2

EImE
, the Fisher

information matrix is

I(θ) =
[
Ipp IT

qp

Iqp Iqq

]
(15)

=
K

σ2
E


Ipp IT

qp(1) · · · IT
qp(Nt)

Iqp(1) Iqq · · · 0
...

Iqp(Nt) 0 · · · Iqq

 , (16)

where



Ipp =
Nt∑
t=1

DT
A(θp)[(m(t)mT (t))⊗ ImE ]DA(θp),(17)

Iqp(t) = AT (θp)(mT (t)⊗ ImE)DA(θp), (18)

Iqq = AT (θp)A(θp), (19)

ImE
is anmE×mE identity matrix, “⊗” denotes the Kronecker

product [14], andDA(θp) is defined as [4], [9]

DA(θp)
4
=

∂vec(A(θp))
∂θT

p

. (20)

Utilizing the structure ofA(θp) in (9), we rewriteDA(θp) as

DA(θp) =
∂vec(A(θp))

∂θT
p

(21)

= (Inp ⊗ (HE(D + H)†)) · ∂vec(V (θp))
∂θT

p

, (22)

wherenp is the number of unknown position parameters and
Inp is an np × np identity matrix. In this way, we need to
calculate only the second part of (22) for any possibleθp,
reducing the computational cost to obtain CRBs for a certain
subject.

IV. N UMERICAL EXAMPLES

We conducted a series of experiments to demonstrate the
applicability of the proposed models in estimating the line
sources. We used a three-layer realistic head model composed
of the brain, skull, and scalp, and assumed the conductiv-
ity values to be0.33Ω−1m−1 for the scalp and brain, and
0.0042Ω−1m−1 for the skull [10]. The inter-layer surfaces
were tessellated into a total of 9290 triangles (2884 on the
brain, 3240 on the skull, and 3166 on the scalp) through
MRI (Philips, Hamburg, Germany). We used an EEG cap
consisting of 32 electrodes (Philips, Hamburg, Germany),
whose positions are adjusted for each subject. For the BEM,
we used linear discretization [5] and chose the weighting
function in a collocation form.

A. Results Using Numerical EEG Data

We compared the performances of different source models
and calculated the CRBs for the CRCM model. Throughout
the experiments in this subsection, we selected the noise
variance to obtain a signal-to-noise ratio (SNR) of 20dB.
We define SNR asSNR = 10 log((

∑mE
i=1 s2

i )/σ2
E), where

s2
i = 1

Nt

∑Nt
t=1 v2

Ei(t) is the signal power at theith sensor.
1) Comparison of different models: We assumed a

source that lies along a straight line between[x, y, z] =
[12, 15, 60]mm and[x, y, z] = [40, 40, 52]mm. It has a length
of 38mm and a larger change in the elevation than the azimuth.
We chose the moment densityq(s) = [qx(s), qy(s), qz(s)]
with qx = −s2 + 400nA, qy = 200nA, andqz = −s2 + 2s +
300nA, so that it is small at the ends and large at the center.
We applied the VPVM model to generate the EEG data and
estimated the source parameters using all the proposed line-
source models as well as the dipole source model.

TABLE I

COMPARISON OF ESTIMATION PERFORMANCE USING SIMULATED DATA.

THE SOURCE IS ASSUMED TO LIE ON A STRAIGHT LINE BETWEEN

[12, 15, 60]mm AND [40, 40, 52]mm. THE SOURCE MOMENT DENSITY IS

CHOSEN TO BEqx = −s2 + 400nA, qy = 200nA, AND

qz = −s2 + 2s + 300nA, WHERE s IS THE CURVE PARAMETER.

Source model No. of para. MSE(µV2) AIC

Dipole 6 1.65 108.77
CRCM 8 1.32 103.16
VPCM 9 0.91 96.27
VPVM 15 0.63 101.29

Fig. 2. The Craḿer-Rao bounds on the unknown source position parameters
for the CRCM model (SNR=20dB). (a)p0 = 85mm, ξ0 = 45◦, ρ = 0, and
ϕ2 = 60◦; (b) ξ0 = 45◦, ρ = 0, ϕ1 = 20◦, andϕ2 = 60◦.

We analyzed the estimation accuracy and model fitness
using the mean-squared error (MSE) and the Akaike’s in-
formation criterion (AIC) [15]. The AIC penalizes the log-
likelihood function for additional source parameters, and hence
accounts for the trade-off between model complexity and
accuracy. For normally distributed noise with varianceσ2,

AIC = ln((2π)mNtKσ2) +

∑Nt
t=1

∑K
j=1 eT

j (t)ej(t)
σ2

+ 2g,

(23)
whereg is the number of unknown parameters, andej(t) is the
noise at thetth time sample in thejth trial. Hence, a smaller
AIC value indicates a better fit of the model.

The simulation results are shown in Table I. We observe
that the line-source models have smaller MSEs and AICs than
the dipole model, showing that line-source models can explain
the data better than the focal one if the real source is extended
sufficiently.

2) Craḿer-Rao bound results: We computed the CRBs for
the CRCM model, and analyzed the bounds on the variance
of the position parameters in order to investigate the effects
of the source length and depth on the estimation performance.
We chose a moment densityq = [100, 100, 100]T nA and set
ρ = 0. The CRB results are shown in Fig. 2. Fig. 2a is the
CRB for ϕ1 with p0 = 85mm, ξ0 = 45◦, andϕ2 = 60◦; and
Fig. 2b for p0 with ξ0 = 45◦, ϕ1 = 20◦, andϕ2 = 60◦.

We observed from the CRB values that

• Longer sources result in smaller CRB on the azimuth
limit; that is, it is easier to estimate longer sources. Fig.
2a shows that we can estimateϕ1 with standard deviation
less than 3◦ for a source longer than 12mm, at a depth
of p0 = 85mm and elevationξ = 45◦.



TABLE II

ESTIMATION PERFORMANCE RESULTS FOR REALEEG MEASUREMENTS

OF N20 RESPONSES.

Subject A B C D

MSE (dipole) (µV2) 3.54 1.26 2.69 1.98
MSE (VPVM)(µV2) 2.76 1.04 2.20 1.35
Error decreased (%) 22 17 18 31

Est. source length (cm) 2.34 1.89 2.56 2.14

(a) (b)

(c) (d)

Fig. 3. Estimated line and dipole sources for real EEG measurements of
N20 responses (in the brain mesh).

• Deeper sources produce larger CRBs of the depth compo-
nentp0. We can infer from Fig. 2b that the source depth
can be estimated with less than 3mm error if the source is
more than 70mm away from the head center. Therefore,
deeper sources result in worse estimation accuracy.

B. Results Using Real EEG Data

We now present results using real EEG measurements of
N20 response from four healthy human subjects. The data were
recorded over the contralateral somatosensory cortex when
square-wave current pulses of 0.2ms were delivered to the
right or left wrist at a stimulation rate of4Hz. The data were
sampled at 5000Hz with a1500Hz anti-aliasing low-pass filter,
resulting in 250 time samples for each subject.

We applied the VPVM model and the dipole model to
estimate the source parameters. We computed the MSEs and
also estimated the source length. We can see from the Table
II that the VPVM model has a smaller MSE than the dipole
model. In Fig. 3, we plotted the estimated dipole source and
line source for each subject in the brain meshes obtained from
MRI.

V. CONCLUSION

We proposed three parametric line-source models for EEG
with increasing degrees of freedom. We assumed a realistic
head model and solved the EEG forward problem using the
boundary element method. We derived the MLEs and CRBs
of the source parameters and evaluated the model fitness using

the MSE and AIC values. The main results can be summarized
as follows:
• Numerical results showed that the proposed line-source

models perform better than the dipole source model for
extended sources.

• The CRB of the position parameters indicated that longer
sources result in better estimation accuracy, and deeper
sources produce poorer performance.

• The proposed models explained the real EEG measure-
ments of N20 responses better than the dipole source
model.

Among the possible extensions of the present work is the
surface-source modeling for EEG. It is useful especially for the
epileptic sources that are usually extended over a large area.
With enough prior information, we may improve the model-
ing precision and estimation performance by choosing basis
functions (see details in [11]) according to the tissue shape
information obtained from MRI instead of using polynomials.
Furthermore, we can also incorporate more complex noise
models (e.g., unknown spatially correlated noise) and obtain
the MLEs of the unknown parameters using the extended
GMANOVA technique as in [4].
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