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Abstract—Event-Related Potentials (ERPs) provide 
non-invasive measurements of the electrical activity on 
the scalp that are linked to the presentation of stimuli 
and events. Brain mapping techniques are able to 
provide evidence for the solution of debatable issues in 
cognitive science. In this paper, a two-step signal 
classification  approach is proposed, extending the use 
of the Low Resolution Brain Electrical Tomography 
(LORETA) inversion technique. The first step 
concerns the feature extraction module, which is based 
on the combination of the Multivariate Autoregressive 
model with the Simulated Annealing technique. The 
classification module, as the second step of the 
methodology, is implemented by means of an Artificial 
Neural Network (ANN) trained with the back-
propagation algorithm under “leave-one-out cross-
validation”. The ANN is a multi-layer perceptron, the 
architecture of which, is selected after a detailed 
search. The proposed methodology has been applied 
for the classification of first episode schizophrenic 
patients and normal controls using as input signals the 
intracranial current sources obtained by the inversion 
of ERPs using the LORETA technique. Results by 
implementing the proposed methodology provide 
classification rates of up to 93.1%. Finally, the 
proposed methodology may be used for the design of 
more robust classifiers based on the head-surface 
measured potentials as well as on the intracranial 
source locations, which directly relate to cognitive 
mechanisms. 
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I.  INTRODUCTION 

 
The inversion of cognitive ERPs to intracranial current 
sources provides a method to observe brain phenomena 
related to information processing mechanisms. Various 
methods are currently used, mainly computing discrete 
brain dipoles or dipolar layers, which generate potentials, 
on the surface of a model of the intervening volume 
conductor, that best fit the measured ERPs [1-4]. The use 
of ERPs in psychiatry could be greatly enhanced by 
classification systems integrated in properly designed 
decision-support systems (DSS). 
 Scalar autoregressive (AR) coefficients, extracted from 
biosignals and treated as feature vectors in classification 
methods, have been widely used in designing DSS in 
medicine [5][6]. The use of AR coefficients extracted 
from single electroencephalogram (EEG) channels may 
miss information existing in the relation of multiple 
simultaneously recorded waveforms, reflecting the 
underlying intracranial generators’ geometry and 

dynamics. In such cases, the AR model can be replaced by 
the multivariate autoregressive (MVAR) model [7].   
 In contrast to the use of features extracted from scalp-
recorded EEG or ERPs, for the development of 
classification systems, relatively fewer studies explore the 
use of features from intracranial quantities [8-10].  
In this paper, a method for the classification of 
multivariate autoregressive coefficients extracted by 
intracranial source signals, is proposed applying cross-
validation and neural network architecture selection while 
extending the use of LORETA inversion techniques. 
 

II.  SUBJECTS AND ERP RECORDING PROCEDURE 
 

 Fourteen (14) never medicated FES patients (8 men 
and 6 women) with mean age 29 (±7) years were matched 
for age and sex to 30 healthy controls (20 men and 10 
women) with mean age 31 (±3) years. Written informed 
consent was obtained from both patients and controls. 
Patients and controls were evaluated by a computerised 
version of the digit span Wechsler test [11]. The 
parameters calculated were ERPs for each subject as well 
as for each of the abductions Fp1, Fp2, F3, F4, Fz, C3, C4, 
Cz, (C3-T5)/2, (C4-T6)/2, P3, P4, Pz, O1, O2, resulting 
from the twenty six (26) test repetitions of the 
experimental procedure. These signals were then averaged 
as a pre-processing de-noising step of the procedure.  

 
III.  BRAIN ELECTRICAL TOMOGRAPHY 

 
 LORETA was used to compute the 3-dimensional 
intracerebral distributions of current density. The 
algorithm solves the inverse problem assuming related 
orientations and strengths of neighboring neuronal 
sources. Mathematically this assumption is implemented 
by finding the ‘smoothest’ of all possible activity 
distributions.  
 The LORETA version used in the present study [12] 
was registered to the Talairach brain atlas [13]. Based on 
the digitised Talairach and probability atlases of the Brain 
Imaging Centre (Montreal Neurologic Institute), 
computations were restricted to cortical gray matter and 
hippocampus. Tha spatial resolution of the method was 
7mm and the solution space consisted of 2394 voxels. The 
LORETA algorithm computed at each voxel current 
density as the linear weighted sum of the scalp electric 
potentials. Thus, LORETA combines the high time 
resolution of the EEG/ERP with a source localization 
method that permits truly three-dimensional tomography 
of the brain electrical acitvity. 
 

IV.  CLASSIFICATION SYSTEM 
 

 The proposed DSS consists of two basic modules: the 
feature extraction and the classification modules, as shown 
in Fig. 1.  
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 The input to the first module is the signals of different 
intracranial sources of a specific ERP data set, for all 
subjects. The appropriate characteristics are extracted and 
processed by the feature extraction module, and then fed 
to the classification module. The structure of the neural 
network classifier is selected after a detailed search. The 
output of the DSS is one of two classes: patients or normal 
subjects.  
 

 
 
Fig. 1: Block Diagram of the proposed DSS for the classification of the 
ERPs into two classes: patients and healthy controls. 
 
A.  Feature Extraction Module 
 The feature extraction module comprises the 
implementation of the Multivariate Autoregressive model 
(MVAR model) in conjunction with the Simulated 
Annealing technique (SA technique), for the selection of 
optimum features. 
The implementation of the Multivariate Autoregressive 
model to intracranial signals, keeps up with the idea that 
they are described by a linear filter fed with noise. 
According to this model, each value of the signal can be 
estimated using some previous values of it, as follows 
[14]:  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kepkxpkxkxkx +−Α−⋅⋅⋅+−Α−−Α−= 2211  

where  is a dimensional vector of data at time  
and  is a dimensional vector of random input. The 

 are the  matrices of the 
autoregression coefficients to be estimated from 

 and 

( )kx −d k
( )ke −d

( ) piiA ,...,1   , = dd ×

( ) ,...,Nkkx 1   , = p  is the model order. These 
coefficients construct the feature vector of each subject. 

 In this paper the Multivariate Autoregressive model is 
implemented in conjunction with the Simulated Annealing 
technique, according to the following procedure. Firstly, 
an optimum combination of abductions (number and kind) 
is found using the MVAR model in conjunction with the 
SA technique [15][16]. The optimum selection is based on 
the classification rate obtained by the Fuzzy C-Means 
Algorithm [17]. The optimum combination of abductions 
obtained by the previous step is further examined by a 
fine-tuning process in order to be finalized. This 
methodology is presented in pseudo-code as follows: 
 
Step 1:  Define the model order p. 
Step 2:  Search for the optimum combination of inputs 

using the SA technique 
Step 2.1:Define the kind and number of inputs  
Set initial Temperature. 
Random selection of initial combination of inputs 
For i=1 to a number of temperatures do 
Begin 
For j=1 to maximum number of combinations per 
temperature 

Begin  
Step 2.2: Selection of next combination of inputs 
based on the current combination of inputs and the 
current temperature 
Step 2.3: Calculation of MVAR Coefficients 
Step 2.4: Calculation of classification rate, using the 
Fuzzy C-Means algorithm  
Step 2.5: Acceptance of the current combination 
based on the Boltzmann distribution 
End NN 

structure 
selection 

Reduction of Temperature 
End 

 
 The selection of the next combination of input signals 
depends on the current one and the current temperature. 
The higher the temperature, the smaller the number of 
inputs that participate in each change. Given a 
combination of inputs, for the choice of the next 
combination, one of the following changes took place: a) 
insertion of inputs, b) abstraction of inputs, c) alteration of 
inputs, d) insertion and alteration of inputs, and e) 
abstraction and alteration of inputs. In cases of insertion or 
alteration of inputs, the lower the temperature, the smaller 
the distance between the new input and the rest. 
 According to the aforementioned Multivariate 
Autoregressive model, a feature vector is constructed for 
the finalized optimum combination of abductions, with 
dimensionality ddp ×× , where  is the model order 
and d is the number of abductions used. 

p

 
B.  Selection of NN structure 
 The selection of the topology of the feed-forward 
ANN is a methodological aspect that was investigated in 
the present work. After a preliminary investigation, it was 
found that satisfactory results, were achieved using two to 
four currents combination, with orders of 4 or 5. Therefore 
we chose to search for the optimum number of hidden 
layer neurons using source combination [881, 1266, 1496, 
2226], leading to a feature vector of 64 (Table 1). First, we 
tested 3-layer neural networks with 1 and 2 output neurons 
and hidden layer neurons ranging from 4 to 40 (with steps 
of 4). Then we tested 4-layer neural networks with the 1st 
hidden layer neurons ranging from 4 to 40 (with steps of 
4). For each number of neurons in the hidden layer the 
neurons in the second hidden layer varied from 4 to 40 
(with steps of 4).  
 
Table 1: Specificity and sensitivity computed for the case of source 
combination [881, 1266, 1496, 2226]. 
 Controls FES Accuracy  
Controls (30) 28 2 93.3 Specificity 
FES (14) 3 11 78.5 Sensitivity 
Accuracy 90.3 84.6 88.6 Overall 
 Neg. predict.  

value 
Pos. pred. 
value 

  

 
 The results of the tests suggested broadly similar 
performance for 3-layered and 4-layered networks with 1 
or 2 output neurons. Furthermore, given that the input 
layer consisted of 64 neurons, the performance of the 
network was not significantly influenced by the number of 

LORETA 
signals 

Feature 
Extraction 

Patient 
 
Control Classifier    
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neurons in the first hidden layer (which, of course, is the 
sole hidden layer in 3-layered ANNs), as long as that 
number was between 12 and 28 (approximately equal or 
more than 1/5 and equal or less than 2/5 of the number of 
input neurons). Reducing the neurons in the first layer to 
less than 12 led to a gradual reduction of the performance . 
 So, according to the above empirical results the 
networks used in the present study were 3-layered, with 
the ratio of neurons at the input and hidden layer around 5 
and 1 neuron in the output layer.  
 
C.  Classification Module 
 The second module is implemented with an ANN 
consisting of three layers (Fig. 2).  

Neural Network 
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Fig. 2: Architecture of the Classifier. 
 
 The input layer consists of a number of neurons equal 
to the number of the selected features. The hidden layer 
contains number of neurons equal to the one fifth of the 
input neurons. The output layer consists of one neuron, 
encoding the two classes of the subjects: patient and 
normal (0=patient and 1=normal). The back-propagation 
algorithm [18] with adaptive learning rate and momentum 
(estimated under a trial-and-error process) has been used 
in order to train the ANN (Initial weights randomly 
selected in [–1,+1]. Log-sigmoid/tan-sigmoid used for the 
hidden/output layer, respectively).  
 In order to avoid overtraining and achieve an 
acceptable generalization in the classification, the “leave-
one-out cross-validation” neural network implementation 
scheme was adopted [19]. According to this scheme, the 
neural network is trained using all the patients and control 
subjects, except from one (no mater if patient or control), 
which will be used for testing. The generalization ability 
of the specific network is tested using the single excepted 
subject. The above mentioned training-testing procedure is 
repeated using a different subject for testing, until all 
subjects are used once each. Under the “leave-one-out 
cross-validation” implementation, the applied neural 
networks present slight differences between each other, by 
inference of the slight variation of the training and 
validation sets and testing subject in each one. So, the 
aggregate sum of the correctly classified subjects can be 
considered as corresponding to the neural network that 
comes up after being trained with all patients and control 
subjects. 
 

V.  RESULTS 
 

A.  Implementation Parameters 
 The chosen time period of signals was the 500-800 
msec time interval, because this time period corresponds 

to the P600 ERP component, which represents the 
completion of any synchronized brain operations 
concerning a decision taken after the presentation of a 
warning stimulus. Additionally, the order of the model 
used was tested for different values varying from 3 up to 
15. The number of signals in a combination varies 
between 2 and 8. 
 The parameters of the SA technique were determined 
experimentally and set to: initial guess=random, initial 
temperature=5, percentage of temperature reduction at 
each iteration=5%, number of temperatures=50, maximum 
number of combinations per temperature=40. 
When the MVAR model is used, in ERP modeling, 
requires the definition of several parameters such as the 
number and kind of signals, the time interval of the 
examined waveforms and the order of the model used. 
Even though in our study we considered a fixed time 
interval (500-800 msec) the search space constructed by 
the combination of the remaining aforementioned 
parameters (2394 signals and model orders between 3 and 
15), seems practically non-manageable. So, as a pre-
processing step, we tried to reduce the initial 2394 input 
signals, in order to reduce the computational intensity of 
our classification system. We made a comparative 
correlation testing of numerous source neighborhoods 
defined by placing each source on the centre of a cube and 
comparing its waveform to the waveforms of the sources 
that belong to the vertices of this cube. Conclusions 
indicate that adjacent sources have similar waveforms.  
Such a finding seems quite reasonable first because of the 
LORETA’s choice of the smoothest inverse solution and 
second because of the relatively small electrodes/sources 
ratio (16/2394≈1/150). So, having in mind that similar 
waveforms do not affect the performance of the 
classification system, we finally ended up with 478 
sources uniformly distributed in the cortical gray matter 
and hippocampus, having applied a source sub-sampling 
by order of 5. 
 
Table 4: Performance (classification rates) of the MVAR/SA feature 
extraction method implemented on LORETA source data. The first 
column corresponds to the model order, the second to the resulting 
dimension of the feature vector, while the two last columns present the 
classification rate achieved by each source position combination and the 
misclassified patients and control subjects. 

Source positions Order Dimensio
-nality 

Classifica-
tion Rate 

(%) 

Misclassified 
subjects 

766, 1521 4 16 93.1 1/30 - 2/14 
1476, 1661 5 20 90.9 2/30 - 2/14 
571, 1366 4 16 90.9 2/30 - 2/14 

1336, 1431, 1921 5 45 90.9 2/30 - 2/14 
881,1266,1496,2226 4 64 88.6 2/30 - 3/14 
 
B.  Clinical Results  
 Classification results obtained with the MVAR/SA 
method, are presented in Table 4. The highest 
classification rate (93.1%) was achieved for the source 
combination [766, 1521]. For combinations [1476, 1661], 
[571, 366] and [1336, 1431, 1921] the classification rate 
was 90.9% and for combination [881, 1266, 1496, 2226] 
was 88.6%. The dimensions of the feature vectors 
produced by the feature extraction module were 16, 20, 
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16, 45 and 64 respectively. In Fig. 3 we present the 
topographical distribution of the source positions for 
optimum combinations.  
 

VI.  DISCUSSION 
 

 The requirement to use information existing in source 
waveforms corresponding to concurrently recorded ERP 
waveforms leads to the creation of an unpractical large 
search space for selecting the MVAR model providing the 
best classification rate. The combination of the MVAR 
model with the SA optimization technique, as proposed in 
the present work, provides a principled way to reduce the 
computational complexity of the search process.  
 
 

 (a) 

 (b) 

 (c) 

 (d)          (e) 

 [12]  R.D. Pascual-Marqui, “Review of Methods for Solving the EEG 
Inverse Problem”, Intern. Jour. of Bioelectromag., 1:75-86, 1999.  

Fig. 3: Horizontal planes of optimum source combinations, registered to 
the cortical gray matter and hippocampus of the Talairach brain atlas. 
(a):[766, 1521], (b): [1476, 1661], (c):[571, 1366], (d):[1336, 1431, 
1921], (e):[881, 1266, 1496, 2226] 
 
 In applications, where measured data are expensive or 
difficult to find and therefore limited, like FES patients, 
the design of neural-network based models is even more 
difficult, because the learning procedure gets worse with 
less data. Cross-validation uses a dynamic split of data 
managing to use all of the available data. In our study we 
applied cross-validation under the “leave-one-out” 
procedure, which consists of a cyclic allocation of the 
available data to the training and testing set, and allows 
use of a large part of the data in each cycle as training set 
and uses the remaining as testing set.  
 The rationale for investigating the capacity of source 
waveforms in providing satisfactory classification 

performance is that they are expected to be more robust to 
overlearning, since they might be more related to the 
actual pathophysiological processes [1]. 
The existence of frontal and right temporal source 
positions in combinations providing satisfactory 
classification results, may indicate the significance of 
these brain regions, in differentiating between normal and 
pathological mechanisms in schizophrenia, in agreement 
to research results concerning the involvement of those 
regions in schizophrenia [20][21]. 
 Further research is currently carried out concerning the 
evaluation of other ERP inversion techniques that have 
been proposed in the literature, in order to compare the 
classification performance provided by the various 
parameters modeling brain electrical phenomena. 
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