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Abstract— Many source localization strategies need the 
number of sources as the input parameter (e.g., spatio-
temporal dipole fitting, the multiple signal classification and 
the first principal vectors). In this study, an information 
criterion method based on the spatio-temporal signal model is 
presented, which can estimate the number of independent 
sources from measured signals. Computer simulations are 
conducted to evaluate the effects of various parameters on the 
estimation of source number. A three-concentric-sphere head 
model is used to represent the head volume conductor. Two 
kinds of signal sources, i.e. the damped sinusoid sources and 
sinusoid sources within two separated frequency bands are 
used to simulate the oscillation characteristic of epileptic 
sources for ictal and interictal spikes. The present results 
suggest that the present method can estimate the number of 
sources from the EEG measurements for the two kinds of 
signal sources. For five sources, the best performance of 
estimation for damped sinusoid and sinusoid sources are 90% 
and 98% under 20% additive non-ideal noise, respectively. It is 
also found that the different penalty functions used in the 
information criterion method could have substantial influence 
on the estimation accuracy for the non-ideal noise. 
 

Keywords—Spatio-temporal model, information criterion, 
high resolution EEG, brain mapping 
 

I.  INTRODUCTION 
 
 The reconstruction of brain activity from measured 
electroencephalograms (EEGs) is receiving wide interest 
[1]. Many inverse methods have been developed to 
reconstruct the brain activity, such as the spatio-temporal 
dipole localization [2], the multiple signal classification 
(MUSIC) [3] and the first principal vectors (FINES) [4]. 
However, in these methods, precise estimate of the sources 
may be obtained only if the number of sources is correctly 
determined. Currently, researchers must assume the number 
of independent sources. 

Uijen and van Oosterm [5] proposed the information 
criterion method and the threshold method to detect the 
number of independent signals in Multilead ECGs. They 
showed that the information criterion method is superior in 
detecting the number of signal components. Knösche et al. 
[6] used the information criterion method to determine the 
number of independent sources of scalp EEGs. Nine kinds 
of information criteria functions were used to estimate the 
number of independent sources. And the noise, electrode 
number and the number of time points were also considered 
in the simulation. However, the computational simulation 
only considered an ideal source activity. On the other hand, 

the influence of the penalty function on the identification 
has not been addressed. 
 In the present study, we present the information 
criterion (IC) method to estimate the number of sources for 
two kinds of signal sources. The effects of the penalty 
functions, the noise and source activity on the identification 
of the number of sources are evaluated via numerical 
simulations. 
 

II.  METHODS 
 
A.  Information Criterion 

The measured potential set recorded by M electrodes in 
the N time instant points can generally be described as 
 

V = AS + N.                                (1) 
 

where V is the M×N measurement matrix, A is a transfer 
matrix with M columns and K rows from the sources’ 
strength to the measurements and it depends on the location 
of sources and electrodes, and the conductivity distribution 
of the head model, S is the K×N source strength matrix, N 
represents the additive noise, and K is the number of 
sources. The number of sources can be determined by 
analyzing the eigenvalues of the covariance matrix R of V 
in Eq. (1) by the IC method. The IC (ICk) value can be 
expressed as follows: 
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where log(•) is the natural logarithm, λi is the i-th eigenvalue 
of R, k is the number of assumed sources, and d(k, M) = 
k(2M – k + 1) /2. According to the rule of the IC method, the 
number of sources with minimum IC is selected as the 
estimated number of sources. In 1969, AKAIKE firstly 
proposed the AIC, a statistic incorporating Kullback-Leibler 
information with the use of maximum likelihood principles 
and negative entropy. Different penalty functions based on 
AIC have been reported [7]. In the present study, the penalty 
function C(N) can take one of the following five forms: 1) 
C1 = 2; 2) C2 = 2log(log(N)); 3) C3 = log(N); 4) C4 = 2log(N); 
5) C5 = 3log(N). 
 
B.  Computer Simulations 

In the forward procedures of the simulations, a three-
concentric-sphere model consisting of three compartments 
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(with radii of 8.7 cm, 9.2 cm and 10 cm) was used to 
approximate the head volume conductor. The corresponding 
conductivity values (0.33s/m, 0.0165s/m, 0.33 s/m) for the 
various tissue types are adapted from Lai et al. [8]. The 
scalp potentials are assumed to be measured on the 
outermost sphere by a 128-electrode system. The number of 
the sources ranges from one to five in a row. For each set of 
the sources, 500 samples were generated. For all samples, 
the locations were generated randomly under the constraint 
that the distance between any two dipoles is larger than 1.0 
cm. The orientations were generated randomly. 

As each sample, the fixed sources are assumed based on 
the spatio-temporal model. The sampling rate is 2000 Hz 
and 200 temporal samples (=100 ms) are obtained in the 
forward simulation [9]. Here, two kinds of sources shown in 
Fig. 1 are used, i.e. the damped sinusoid sources and 
sinusoid sources within two separated frequency bands (10 
Hz and 40 Hz). Both of them are intended to simulate the 
oscillation characteristic of epileptic sources for ictal and 
interictal spikes. Within each case, the non-ideal noise is 
added to the simulation data. Firstly, the white noise is 
obtained by adding noise of normal distribution at different 
levels (5%, 10%, 20%, 30% and 40%). The noise level is 
defined as a percentage ratio of the root mean square value 
of the noise to that of the potential data [4]. It is then 
multiplied by a M × M matrix T. For the white noise 
mentioned above, this matrix is diagonal and its elements 
are uniformly 1. For the spatially correlated noise, the 
elements of T are Tij = 0.5/h for adjacent i-th and j-th 
electrodes, where h is the adjacent electrode number of the i-
th electrode. When i is equal to j, Tij = 0.5 and Tij = 0 
otherwise [6].  

 
Fig. 1.  Two source waveforms used in the present simulation.  

(a) Case A: damped sinusoid waveforms, (b) Case B: sinusoid waveforms. 
 

III.  RESULTS 
 

A.  Case A 
 At first, we investigated how the present method 
performs under 10% non-ideal noises. Fig. 2 (I) indicates 
that the accuracy of identification can be impacted by the 
different penalty functions for the non-ideal noise. With the 
penalty functions C1 and C2 we can not obtain the correct 
source number for the five-source cases. From the 
distribution of the five-source cases, C3 yielded the highest 

identification accuracy, i.e., the detected source number in 
all samples is five. When the larger penalty functions (C4 
and C5) are used, the detected source number in some 
samples is smaller than five. Therefore, it is important to use 
the suitable penalty function under the non-ideal noise.  

 

 
 
Fig. 2.   The Identification results for Case A. (I) distribution of estimated 
source number for 10% non-ideal noise and (II) Accuracies of five cases 
with the proposed method. (a) one dipole case, (b) two dipoles case, (c) 
three dipoles case, (d) four dipoles case and (e) five dipoles case. 
 

On the other hand, the noise level may affect the 
identification results and the selection of the penalty 
function. Fig. 2 (II) summarizes the accuracies of five-
source cases under five noise levels, where the accuracy 
defined as the percentage of the correct estimation cases in 
all the samples. The simulation results indicate that the 
accuracies of identification are not influenced for one-, two- 
and three-source cases when the noise level increases. The 
accuracy of them is between 99% and 100%. However, the 
variance of noise level can impact the accuracy of four- and 
five-source cases. When the noise level is larger than 20%, 
the accuracies of five sources case are lower than 50% using 
C3 under the non-ideal noise. For Case A, it can be 
concluded that C3 is the optimal penalty function and can 
identify effectively up to five sources. 

 

 
Fig. 3.  Accuracies of five cases with C3 for the non-ideal noise, Case B.  

 
  

B.  Case B 
In the case of sinusoid waveforms, C3 also provided the 

optimal performance. Fig. 3 summarizes accuracies with C3. 
When the noise level is larger than 30%, the accuracies of 
five-source case are lower than 60% under the non-ideal 
noise.  
 

IV. DISCUSSION 
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In the present study, we use the IC method to estimate 
the number of independent sources in the spatio-temporal 
model. The main results of numerical simulations are as 
follows. Firstly, the choice of penalty functions in the IC 
method can significantly affect the identification accuracy 
for the non-ideal noise in all source cases and increase the 
ability of tolerating the non-ideal noise. By the simulation, 
the optimal penalty function can be determined, given the 
forward model and the electrode configuration. Secondly, 
the form of the time function also can affect the accuracy of 
identification substantially. According to the simulation 
results, we can estimate the number of sources up to five for 
the damped sinusoid sources and sinusoid sources. Lastly, 
we find that the optimal penalty function is C3 for 128-
electrode configuration. It has the best ability of tolerating 
the non-ideal noise. For the two kinds of the sources, the 
highest accuracies can be obtained by the present method.  
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