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Abstract- We have developed a new algorithm (3-dimensional 
first principle vectors, 3D-FINE) to enhance the spatial 
resolvability and localization accuracy for closely spaced 
sources, which are reconstructed from the scalp EEG using 
subspace source localization method. Computer simulations 
were conducted to evaluate the performance of the 3D-FINE 
algorithm in an inhomogeneous realistic geometry head model, 
in comparison to classic subspace source localization approach. 
The present results show that 3D-FINE could distinguish 
closely spaced sources, with distance as low as 8.5mm at signal-
noise-ratio (SNR) of 12dB, simulated on the superficial gyrus 
and sources, with distance as low as 16.3mm at SNR of 12dB, 
simulated within the deep sulcus. The present computer 
simulation results indicate that 3D-FINE show improved 
source localization accuracy as compared with the MUSIC 
algorithm at various noise levels, i.e. SNR from 6 dB to 16 dB, 
for closely spaced sources.  
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I. INTRODUCTION 
 

In the attempts to noninvasively localize electric 
sources from the scalp EEG, three-dimensional (3D) source 
localization is of increasing interest in both neuroscience 
research [1] and clinical applications [2-3]. The subspace 
source localization methods, e.g. MUSIC algorithm [4], 
have been successful in 3D source localization. The 
subspace approaches avoid difficulties of traditional least-
squares source localization methods, i.e. multidimensional 
nonlinear optimization and initial value selection problems. 
Using a 3D search, they estimate multiple source locations 
at their cost functions’ extrema through certain projection 
onto the estimated signal or noise subspaces, which are 
obtained from the noninvasive measurements. Different 
projection onto specifically designed subspaces can achieve 
different source localization features.  

The advancement of MUSIC algorithm led to the 
recursively applied and projected MUSIC (RAP-MUSIC) 
algorithm [5], which uses a recursive procedure to find 
multiple source locations with each at one recursive step. It 
demonstrates the improved performance in two highly 
correlated sources [5]. We have recently developed a new 
algorithm in the framework of subspace source localization 
by investigating the use of the first principle vectors (FINE) 
to enhance the spatial resolution and improve the 
localization accuracy [6]. The capability of 3D-FINE for 3D 
source localization was demonstrated by several computer 
simulations in a three-concentric-sphere head model.  

In the present work we visited the rationale of 3D-FINE 
algorithm by comparing its formulation with other 
algorithms in subspace source localization. We unified all 
projection formulations over noise subspace rather than 
signal subspace. We specifically developed the 3D-FINE 
incorporating the realistic geometry (RG) information of 
human head in order to diminish the errors caused by using 
an approximated three-concentric-sphere head model. A 
three-shell realistic geometry inhomogeneous head model, 
reconstructed from a human subject’s MR images, was used 
and numerically solved by means of boundary element 
method (BEM). The performance of the newly developed 
RG 3D-FINE was systematically evaluated by computer 
simulations.  
 

II. METHOD 

 
A. 3D-FINE 
 

In principle, subspace source localization methods scan 
the entire possible source space in a 3D grid and calculate 
the subspace correlation between subspace spanned by each 
scanned point, denoted as ( )rA , and the entire noise 

subspace, denoted as nE , estimated from a spatio-temporal 
matrix consisting of measured EEG data, and thus obtain 
estimates for multiple source locations at the extreme values. 
Alternatively, the similar procedure could be realized 
against the estimated signal subspace because it is 
orthogonal to the entire noise subspace. We unify the 
formulations of all the algorithms here using noise subspace 
in order to make them comparable. And we define subspace 
correlation as estimator and define the procedure to obtain 
estimator values over noise subspace as projection. 

The above mentioned procedure is the classic subspace 
source localization, known as MUSIC algorithm. The 
detailed description of MUSIC can be found in [4] and the 
final form can be expressed as 
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where ( )rAU  contains left singular vectors of ( )rA , which 

is the subspace span by source point at r . T
nnn EEP =  is 

the projection matrix formed on entire noise subspace, nE  
[4]. The denominator of the equation (1) calculates the 
subspace correlation between these two subspaces. The 
MUSIC estimator, ( )rJMUSIC , thus, identifies multiple 
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source locations at the equation (1)’s maximal extrema, 
which are reciprocals of the subspace correlations. ][min ⋅λ  
indicates the minimum eigenvalue of the subspace 
correlation matrix given in the bracketed items. The optimal 
source moment orientation is found as eigenvector 
associated with minλ . 

Another subspace source localization method, 
Minimum-Norm algorithm [7], has higher spatial resolution 
than MUSIC. The estimator of Minimum-Norm is formed 
by using the first row of the projection matrix, nP , which is 

denoted by Th , and could be expressed as 
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Comparing the MUSIC and Minimum-Norm 
algorithms, the difference is that Minimum-Norm calculates 
the projection onto the specific row (i.e. first row) of 
projection matrix, whereas MUSIC averages the projections 
onto all the rows of projection matrix. Because of averaging, 
the spatial resolution of MUSIC is smoothed, which means 
its sensitivity to detect closely spaced sources decreases. On 
the other hand, the merit of MUSIC lies in smaller variance, 
which is a measure of the stability of estimator, than that of 
Minimum-Norm, which is practically unstable and exhibits 
false detection [8]. We develop the 3D-FINE algorithm in 
order to improve the spatial resolvability for closely spaced 
sources while keeping the estimates as stable as MUSIC. 
The 3D-FINE algorithm introduces the brain regional 
organization concept into the formulation of estimator and 
uses a specific subset of noise subspace for each brain 
region, instead of the entire noise subspace as in MUSIC 
and one limited row as in Minimum-Norm, to form 
projection matrix. It is thus enriched with both merits from 
above two algorithms, which could reveal brain electrical 
activity at high spatial resolution. 

In the 3D-FINE algorithm, the entire brain could be 
divided into a number of regions due to its organization, and 
for a specific region Θ , its mathematic representation, 
termed as spatially extended source representation matrix, 
can be expressed as   

( ) ( ) ( )∫
Θ

Θ ⋅= rdrArArwR T                                    (3) 

where ( )rw  is a weighting function and r  indicates current 
source location within the brain region Θ . Employing the 
eigen-decomposition on the representation matrix we obtain 
a set of representative vectors that virtually spans the same 
subspace as spanned by the array manifold for region Θ . 

],,,[ 21 DvvvV L=Θ                                                (4) 

The number of representative vectors is selected such that 
the summation of the D largest eigenvalues is not less than 
99 percent of the summation of all eigenvalues. A small set 

of vectors in the noise subspace, denoted as FINE vector set, 

ΘF , could then be found as the intersection subspace 
between the noise subspace and the span of representative 
vectors based on the concept of principal angles [8] and 
used to form a new projection matrix. For different brain 
regions different FINE vector sets are used [6]. 
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B. Forward Solution 
 

In the present study, the computation of the forward 
solution was realized in a three-shell realistic geometry 
inhomogeneous head model using BEM [9].  

The boundary head model was acquired and 
constructed from high-resolution T1-weighted 3D MRI 
images in a subject using Curry software (NeuroScan Labs, 
TX). It consists of three conductivity boundaries between 
air and the scalp, the scalp and skull, and the skull and brain, 
and three compartments with different conductivity values, 
i.e. scalp, skull, and brain. The conductivity ratio used for 
forward solution computation is 1:0.0125:1 for 
scalp:skull:brain [10-11]. The purpose of using the realistic 
geometry head model is to reduce the influence from co-
registration error of generally applied approximated three-
layer concentric sphere head model and evaluate the 
performance of 3D-FINE in a complex irregular shaped 
volume conductor. 
 

III. COMPUTER SIMULATION 
 

In the present study, computer simulations were 
conducted to evaluate the 3D-FINE algorithm as compared 
with the MUSIC algorithm in a three-shell realistic 
geometry inhomogeneous head model. Two source 
configurations, one on the gyrus to simulate superficial 
source and one on the sulcus to simulate deep source, were 
investigated. In each source configuration, two closely 
spaced current sources (D1 and D2) were simulated in order 
to study the spatial resolvability by varying distance 
between them. Both sources had damped sinusoid 
waveforms with frequency of 5Hz for D1 and 7.5Hz for D2. 
The time interval was 200ms long and the sampling 
frequency was assumed as 1 kHz. Gaussian white noise 
(GWN) with varying SNR was added to the calculated scalp 
potentials to simulate the noise contaminated measurements. 
All computer simulations for each simulated condition were 
repeated 40 times using randomly generated GWN. Data 
with more than 30 trials successfully distinguishing two 
simulated sources was presented to keep them reliable and 
comparable. A 128-electrode configuration was used and all 
the electrodes were distributed over the upper hemisphere of 
the head. 
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Fig. 1 Source localization error 
versus distance at SNR=12dB. (a) 
superficial source; (b) deep source. 

Fig. 1 shows the 
localization errors of 
MUSIC and 3D-FINE 
due to different 
distances between two 
sources at the SNR 
level of 12dB for both 
superficial (Fig. 1(a)) 
and deep (Fig. 1(b)) 
sources. The results 
show that both 
MUSIC and 3D-FINE 
have better resolution 
in localizing 
superficial sources 
than deep sources. 
The localization 
errors for superficial 
sources are also much 
lower. For example, 
in the case with 
distance of 19.8mm, 

the average localization error across two algorithms and two 
sources is below 0.5mm for superficial sources, but as large 
as 2mm for deep sources. The difference between MUSIC 
and 3D-FINE could also be observed. When D1 and D2 are 
well separated, the accuracy of 3D-FINE is similar with 
MUSIC. However, when D1 and D2 become closer and 

closer, for both superficial and deep sources, the accuracies 
of 3D-FINE become better and better. Especially in cases 
with distance of 8.5mm and 11.3mm for superficial sources 
and with distance of 16.3mm for deep sources, MUSIC 

couldn’t successfully identify two sources while 3D-FINE 
still works well. 

The performance comparison between MUSIC and 3D-
FINE due to the effect of SNR is presented in Fig. 2. Similar 
phenomena observed in Fig. 1 under the consideration of 
distance also could be observed in Fig. 2 under the 
consideration of SNR level. When the SNR levels are 
relatively high (e.g. 16dB and 14.5dB), the localization 
errors of 3D-FINE are similar with MUSIC in large distance 
cases (Fig. 2(b), (d)). In small distance cases (Fig. 2(a), (c)), 
3D-FINE clearly outperforms MUSIC. In contrast, in the 
cases with low SNR values (e.g. 8dB and 6dB), 3D-FINE 
demonstrates the excellent spatial resolvability which 
MUSIC can’t achieve. Furthermore, by comparing Fig. 2(a) 
with (b) and (c) with (d), at all levels of SNR, the 
localization accuracy will decrease dramatically when 
distance between D1 and D2 decreases. 

Fig. 3 displays 2D mesh plots from the two algorithms, 
MUSIC and 3D-FINE, at simulated sources plane (all 
values are normalized to 64 grayscale levels). More 
specifically, Figs. 3(a) and 3(b) were obtained from 

superficial simulated sources with distance of 11.3mm at 
SNR=12dB, and Figs. 3(c) and 3(d) were obtained from 
deep simulated sources with distance of 19.8mm at SNR=12 
dB. When MUSIC only shows a big lump for superficial 
source configuration in Fig. 3(a), 3D-FINE could 
successfully distinguish two simulated sources with distance 
of 11.3mm (Fig. 3(b)). For deep source configuration, both 
algorithms are able to provide dipole location estimates 
while 3D-FINE appears to show sharper peaks (Figs. 3(c)-
(d)). 

The ratio of standard deviation (STD) between 3D-
FINE and MUSIC is 0.8540 for superficial source 
configuration, and it is 0.8016 for deep source configuration. 

Fig. 2 Source localization error versus SNR. (a) superficial 
source, distance=11.3mm; (b) superficial source, 
distance=14.1mm; (c) deep source, distance=16.3mm; (d) deep 
source, distance=23.3mm. 

Fig. 3 2D mesh plots of two algorithms to illustrate the 
enhanced spatial resolution of 3D-FINE. (a) and (b): 
superficial source, SNR=12dB, distance=11.3mm; (c) and (d): 
deep source, SNR=12dB, distance=19.8mm. 
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All values are averaged over all considered distances, all 
considered SNR levels, and two sources in each simulated 
case for both superficial and deep sources. They indicate the 
STD values of 3D-FINE even lower than those of MUSIC 
although such difference is not obvious, which, at least, 
shows 3D-FINE estimator is as stable as MUSIC estimator. 

 
V. DISCUSSION 

 
We have developed a novel algorithm in the framework 

of subspace source localization by applying projections over 
a subset of noise subspace instead of entire noise subspace. 
The new 3D-FINE enhances the performance of classic 
subspace source localization method, i.e. MUSIC, in many 
conditions as shown in the conducted computer simulations. 
First, 3D-FINE shows much lower spatial threshold to 
separate closely spaced sources (Fig. 1). It also indicates 
much stronger source detections in low SNR conditions (Fig. 
2). Furthermore, it maintains similar stability as MUSIC 
while appreciates above mentioned merits.  

In summary, the excellent performance of the 3D-FINE 
algorithm for EEG based 3D source localization problems in 
a realistic geometry head model is demonstrated via 
computer simulations. The present promising results of 3D-
FINE in localizing closely spaced sources at low SNR 
suggest that 3D-FINE will provide an important alternative 
to brain source localization and imaging. 
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