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Abstract— The computer model based computation of the 
cardiac activation sequence in humans has been recently 
subject of successful clinical validation. This method is of 
potential interest for guiding ablation therapy of arrhythmo-
genic substrates. However, for obtaining clinical acceptance 
computation times of a few minutes are desirable. This has 
fundamental impact on the degree of detail which can be used 
in the model. The central point of this paper is the efficient 
computation of simulated ECG data (forward problem), which 
is needed for each iteration step of the inverse problem solver. 
The computational optimizations are obtained by consequently 
using the biophysical properties of the source sensor relation-
ship (lead field). The developed method is applied for imaging 
the activation sequence in a patient with a left posterior atrio-
ventricular pathway (WPW). The computation time was 92 
seconds on a Pentium 3 GHz CPU. The distance from the first 
onset of activation in the computed activation map to the 
successful ablation site was 11 mm. 

 
Keywords—Cardiac modeling, inverse problem 

 
I.  INTRODUCTION 

 
 The inverse problem of electrocardiography (ECG) is a 
model based back projection of body surface ECG mapping 
data onto a cardiac source pattern. Recently, the successful 
validation of such approaches in humans was reported [1], 
[2]. For a clinical application, however, the source pattern 
has to be computed with a short computation time to obtain 
acceptance. This has severe implications for the model 
underlying the computation limiting the degree of detail 
which can be used in the approximation. 
 Activation time imaging is an iterative method for 
computing the depolarization sequence. At each iteration 
step the measured ECG data are compared with the ECG 
data simulated for the actual guess of the activation pattern. 
The guess is then improved by minimizing a cost function 
[3]. Thus, the method needs the solution of the forward 
problem at each of typically over ten thousand iteration 
steps. The scope of this study is to present a computationally 
efficient evaluation of an activation model which reduces 
the computation time to a few minutes. 
 

II.  METHOD 
 
A.  Model Scope 
 The basic idea of activation time imaging is to minimize 
the difference of the measured ECG data Φ and the 
simulated ECG data Ψ. The computation of the simulated 
ECG needs a proper model. Here, a lead field matrix L 
relating the membrane potentials in P source points to the 

ECG in N electrodes is obtained by applying the boundary 
or finite element method (BEM or FEM). The P membrane 
potentials at K time steps are stored in the source pattern 
matrix V(τ). This notation should indicate that the source 
pattern is fully determined by an activation vector τ 
(solution of the inverse problem). The simulated ECG Ψ 
(forward problem) is obtained by the product 
 

 Ψ = LV(τ).      (1) 
 

 In order to stabilize the inverse solution with respect to 
noise and error in the model a regularization term of 
Tikhonov second order is added. Thus, the cost function has 
the form: 

 min)(1 222
→∆+− ττLVΦ λ

sf
.   (2) 

Here, the first term is called residual error and the second is 
the regularization term with the regularization parameter λ. 
In order to make the choice of λ insensitive to the sampling 
frequency fs of the ECG data the residual error is scaled by 
the sampling frequency. 
 
B.  Computational Demands 
 Details on the optimization method used for computing 
cardiac activation times can be found elsewhere [3]. Shortly, 
a conjugate gradient method with the Polak-Ribiere formula 
for computing the direction of search is used for minimizing 
the cost function. Here, cost function evaluation and the 
computation of its gradient is by far the computationally 
most expensive part. The cost function contains two terms: 
the norm of the difference of measured and simulated ECG 
data (residual error) and the regularization term. As the 
evaluation of the regularization term of Tikhonov second 
order needs only the multiplication of a sparse regularization 
matrix with the activation vector it can be neglected when 
estimating the computation time. 
 The computational demanding task is the computation 
of the forward solution at each iteration step. The computa-
tion of the product (1) needs N×P×K floating point multi-
plications. From the patient data presented in [2] and [3] we 
find that N is 62 for the Amsterdam ECG mapping array, P 
is typically about 500 to 1000 and K is 50 to 100 if the ECG 
data is sampled at 500 Hz (the depolarization interval lasts 
100 to 200 ms). Thus, this step requires about 5 million 
flops. This takes approximately 100 ms on a Pentium 3 GHz 
CPU. At least the same time is needed for computing the 
cost function gradient. Having in mind that more than ten 
thousand iterations are needed for computing an inverse 
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solution we estimate a computation time of 30 minutes. This 
is unacceptable if the imaging method should guide a 
curative treatment like catheter ablation. Note that there is 
no potential for a parallelization of the program code due to 
the iterative nature of the algorithm. 
 
C.  Efficient Activation Model 
 The focus of this paper is to present a method which 
uses the particular biophysical properties of the matrices for 
speeding up the computation of the matrix product by more 
than an order of magnitude.  
 Note that the scope of the model is the computation of 
the activation sequence from body surface ECG data. Thus 
the applied activation function does not need to represent 
such detail of the action potential as ionic current models do. 
It is sufficient to model activation by a step like function, 
with a known amplitude ∆v of, e.g., 90 mV for the 
ventricles. Due to the relatively coarse mesh grid used with 
models applied to the inverse problem a discrete source 
point corresponds to a tissue area (BEM) or volume (FEM) 
with a diameter of about 1 cm. As it takes a few 
milliseconds to activate a patch of this size the rise time 
parameter T is typically larger than the rise time of a single 
cell. A well established activation function Vp(t) is the 
sigmoidal step function [3], [4] 
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with the resting potential v0 and the local activation time τp at  
the source point p. For a time step k we can write t=k/fs.  
 There is a remarkable biophysical property which helps                                            
speeding up the matrix product computation. If for a given 
time step k all source points have the same membrane 
potential (i.e., all at resting potential or all at plateau 
potential) the ECG for this time step k is zero in all leads. 
This effect is responsible for the genesis of the isoelectric 
segments in the ECG and mathematically reflected by the 
fact that all row sums of L are zero. Thus, any constant 
added to all P action potentials will not affect the computed 
ECG. Consequently, any value can be assigned to the resting 
potential v0 in (3). For saving computation time it is of 
advantage to have as many zeros as possible in the source 
pattern matrix V(τ). We can achieve this by choosing either 
the resting or the plateau potential zero. In our implementa-
tion the plateau potential is set to zero by choosing v0=-∆v.  
 Thus, almost half of the source pattern matrix elements 
will equal zero. A second possibility for saving computation 
time is to check for an isoelectric segment in the simulated 
ECG at the begin of the depolarization interval. The smallest 
activation time in the vector τ is termed τmin. We now find 
from (3) that for all time steps k<k0, with k0 = fs(τmin-T) the 

entire source region is at the resting potential. Thus, 
additional computation time can be saved by avoiding the 
computation of time steps k<k0. 
 Finally, we observe that the contribution of a source 
point p to the simulated ECG is equal for all time steps 
k0≤k≤ kp1, with, kp1 = fs(τp-T) as Vp(t) remains constant in this 
interval. Thus, the contribution is computed only once and 
added multiple times to the simulated ECG data matrix. 
Only for the short interval kp1<k< kp2, with kp2 = fs(τp+T) the 
contribution of the source point p to the ECG has to be 
computed independently for each time step. A pseudo-code 
for the fast matrix product computation is listed below.  
 
function simulateECG(activation vector τ , lead field L) 
 initialize the simulated ECG Ψ(n,k) for all n, k with zero 
 compute source pattern V(p,k) for all p, k 
 get the smallest activation time τmin from τ 
 compute k0 rounding towards plus infinity 
 for all source points p do 
  compute kp1 rounding towards plus infinity 
  compute kp2 rounding towards minus infinity 
  for all electrodes n do 
   comment: compute resting potential contribution x 
   x=−L(n,p)×∆v 
   for k=k0 to kp1 do 
    Ψ(n,k)= Ψ(n,k)+x 
   od 
   comment: compute ECG during sigmoidal activation 
   for k=kp1 to kp2 do 
    Ψ(n,k)= Ψ(n,k)+ L(n,p)× V(p,k) 
   od 
  od 
 od 
 
The matrix product needs three nested loops. The outermost 
loop indexes all source points. The next loop indexes all 
electrodes. The innermost loop considers the time intervals 
and optimizations described above. 
 As outlined in [5] the evaluation of the cost function 
gradient brings as many components of new information for 
an optimization problem as there a unknowns (here, source 
points P). Thus, a fast gradient evaluation taking less time 
than P function evaluations will speed up the optimization 
routine. 
       For an efficient computation of the residual error 
gradient we will first make the following definitions: we 
write v'p(k) for the partial derivative of the activation 
function Vp (3) by τp at time step k. Outside the interval 
kp1<k< kp2 the derivative is zero. For the lead field matrix 
column p we write lp. Finally we introduce d(k) for the 
differences of the measured ECG Φ and the simulated ECG  
Ψ in all leads at time step k. Note that this result was already 
computed during the cost function evaluation. The 
component p of the residual error gradient is then given            
by: 
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where the superscript T denotes the transpose. Thus, as the 
interval kp1<k< kp2 contains only a few samples (typically 
about five), the evaluation of the residual error gradient 
needs even less time than the residual error evaluation alone.  
                            

III.  PATIENT DATA 
 

A.  Measurement Protocol 
 In order to test our method with respect to a potential 
clinical application, we investigated data from a 24 year old 
male patient who underwent radio-frequency ablation of an 
atrio-ventricular accessory pathway (WPW-syndrome). The 
measurement protocol is shortly summarized as follows: the 
individual torso geometry was assessed by MRI imaging 
using a 1.5 T Siemens Magneton Vision Plus Scanner. The 
end diastolic ventricular geometry was taken from ECG-
gated oblique cine mode images recorded with 6 mm slide 
thickness and spacing. The torso geometry (skin surface and 
lungs) were obtained from T1-FLASH-mode scans with 10 
mm slide thickness. All scans were performed during 
breath-hold in expiration. From this data a boundary element 
computer model was built up containing the ventricular 
surface (697 source points P, 10 mm mean node spacing) 
the blood masses in the ventricular cavities, the lungs, and 
the skin surface. Seven anterior and five posterior markers 
were used to couple all geometrical data to the computer 
model. The patient was moved to the catheter laboratory and 
a 62-lead electrode array was applied. The electrode and 
marker locations were measured with a magnetic digitizer 
(Fastrak, Polhemus Inc., Colchester, Vt., USA). The Mark 8 
ECG amplifier (Biosemi V.O.C, Amsterdam) was used to 
record the signals at a sampling rate of 2048 Hz and with a 
bandwidth of 400 Hz.    
 During the diagnostic part of the inverse procedure 
electro-anatomical mapping was performed for estimating 
the location of the accessory pathway. The bundle was 
localized in a left posterior position. Here, the coronary 
sinus (CS, a venous vessel in the left posterior and left 
lateral atrio-ventricular groove) was mapped for assessing 
left ventricular activation via the venous system. Mapping 
and annotation of the intra-cardiac signals took about 45 
minutes. As the invasive diagnosis revealed a left sided 
pathway the combined mapping and ablation catheter was 
forwarded in the left ventricular chamber via the femoral 
artery. Two radio frequency deliveries were necessary to 
interrupt the accessory pathway. The distance between the 
two ablation sites was 18 mm. The therapeutic part of the 
invasive procedure took about 20 minutes. After a waiting 
period of 30 minutes (exclusion of a pathway recovery) the 
mapping catheter was removed and the 7 anterior marker 
positions were measured in order to couple the intracardiac 
data to the computer model. 
 
B.  Model Application 
   For the inverse computation the ECG data bandwidth 
was reduced to 150 Hz according to the AHA recom-
mendation [6] and the data was down-sampled to 500 Hz. A 
target beat was manually selected and the signal was 

baseline  corrected prior to the ECG P-wave. The data in the 
time interval of ventricular depolarization (123 ms, 62 time 
steps) was used as input for activation time imaging. After 
removing channels with a low signal quality 55 of 62 leads 
were used as input for the inverse computation.  
 The starting activation time vector for the optimization 
routine was determined by the critical point theorem [7]. 
Here, an effective rank of 19 was determined for the 
measured ECG data matrix. As proposed in [3] a coupled 
regularization scheme was applied. This means that 
regularization was started with a relatively high value 
(λ2=10-11). Then the regularization parameter is reduced 
iteratively by diviving λ2 by √10 at each iteration step. The 
solution obtained from the previous step was used as the 
starting vector for the actual step. As observed in [3] this 
reduces the influence of the regularization parameter on the 
computed activation map.  
The computation time for 9 values of λ was 92 s (21500 cost 
function calls). Thus the time needed for a single cost 
function evaluation and computation of its gradient was less 
than 4.3 ms. As the rise time parameter was selected to be 3 
ms there were typically only 3 time steps in the 
computationally most expensive interval kp1<k< kp2. Thus 
about 95% of all time steps were computed with the 
computational optimizations described above contributing to 
the save in computation time. 
   The activation map computed at λ2=3.2×10-15 is 
shown in Fig. 1. The distance from the location of the first 
activation onset in the computed map to the site of 
successful pathway ablation was 11 mm. 
 
 
 
                  

 
Fig. 1.  The computed activation map is shown in a right lateral to posterior 
oblique view. Note the head icon for orientation. Dark marks early and light 
shading late activation. Isochrones are plotted in steps of 10 ms. First onset 

of activation is computed in a left posterior basal position at about 1 cm 
distance from the two ablation sites (spherical gray markers) 
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IV. DISCUSSION 
 

 Every model is an approximation of the reality and thus, 
every cardiac model will provide only a simplified picture of 
the true (individual) organ. In this context a clearly defined 
application or scope of the model is needed for specifying 
the necessary detail of the approximation. The application of 
the model presented here is noninvasive imaging of cardiac 
activation. A striking property of models applied in this field 
is an astonishingly coarse level of approximation (about 1 
cm grid spacing, assumption of isotropic conduction) [2], 
[3], [4]. 

 There are two arguments which justify the relatively 
coarse mesh grid typically applied: computation time and 
information content of the measured data. To our experience 
the computation time depends approximately by fourth order 
on the reciprocal of the node spacing applied. If we, e.g., 
halve the grid spacing ∆x the BEM mesh will contain four 
times more nodes as before (P~∆x-2). The time needed for a 
single cost function evaluation is proportional to P but as the 
number of iterations needed by the conjugate gradient 
increases approximately linear with P we have a quadratic 
dependency with respect to P. Thus halving the grid spacing 
increases computation time by a factor of 16. We estimate 
on the other hand that the effective rank of the ECG data 
matrix is in the order of 20 and the number of linearly inde-
pendent time steps is about 50 at a signal bandwidth of 150 
Hz. Thus, it seems unlikely that using much more than 
50×20 source points will truly improve the spatial resolution 
of the method. 

As it was shown in [4] activation time imaging can cope 
with a relatively high degree of error in the model. Such 
errors are unavoidable when constructing volume conductor 
models of individual patients. However, it should be 
stressed at this point that according to [4] activation time 
imaging is less sensitive to model error as other approaches 
but not completely insensitive. Thus, one can expect that 
future model improvements such as modeling of individual 
fibrous structures might additionally stabilize the computed 
activation maps. This might be of particular interest for 
more complex activation patterns as, e.g., reentry. 

The amazing stability of activation time imaging with 
respect to model errors enables the use of simplified 
activation functions. The central point of this study was the 
presentation of an activation model which enables the 
computation of an inverse solution in less than 2 minutes on 
an ordinary personal computer. A limitation of our study is 
that a comparison with formerly used activation models is 
missing. The major reason for this is that the optimizations 
in the activation model where developed over the years. Our 
current software differs from former versions in much more 
points (e.g. the programming language was changed from 
Fortran to C++, the optimization strategy is now a conjugate 
gradient instead of a Quasi-Newton method). This hampers 
the possibility of investigating only the effect of the 

activation model.  However, from the data presented one can 
estimate that a single cost function evaluation takes less than 
5 ms while the matrix product in (1) takes alone about 100 
ms. As the computation time needed by the optimizer seems 
negligible, the speed up is more than a factor of twenty. 

As an example for a potential clinical application the 
ventricular insertion of an atrio-ventricular accessory 
pathway was imaged in a WPW-patient with a spatial 
resolution of about 1 cm. Here, the clinical time span needed 
for the diagnosis of a left sided pathway was 45 minutes. 
The inverse computation of the activation map took only 
slightly more than one minute. 

Considering that the computation of the start vector by the 
critical point theorem takes also about a minute and taking 
some time for signal processing (target beat selection, 
baseline correction) into account it is still realistic to reduce 
this time span to a few minutes.                                                                     

The current resolution seems sufficient to describe the 
accessory pathway location in anatomical terms (left, right, 
anterior, posterior, lateral, septal). Clinically, this informa-
tion is already helpful. For positioning the ablation catheter 
the signal from the catheter tip and the stability of the 
catheter position will be the key parameters also in the 
future. 
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