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Abstract— We have developed a novel approach using EEG 

inverse solutions for classifying motor imagery tasks. Two-

equivalent-dipole analysis was proposed to aid classification of 

motor imagery tasks for brain-computer interface (BCI) 

applications. By solving the EEG inverse problem of single trial 

data, it is found that the source analysis approach can aid 

classification of motor imagination of left or right hand 

movement without training. In four human subjects, an 

averaged classification accuracy of 80% was achieved. The 

present study suggests the merits and feasibility of applying 

EEG inverse solutions to BCI applications from noninvasive 

EEG recordings. 
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I. INTRODUCTION 

 

      Over the last three decades, the development of a 

technology called brain–computer interface (BCI) (for 

review see [20] and [23]), has provided a novel and 

promising alternative method for interacting with the 

environment. The ultimate goal of BCI research is to create 

a new communication channel (by means of directly reading 

the patients intent and translating it into physical 

commands) for people suffering from severe motor 

disabilities but being cognitively intact.        

      Present-day BCIs use various signals to detect subjects’ 

intention. In the present study, we use electroencephalogram 

(EEG) and focus on µ rhythm associated with left and right 

hand movement imagination. 

      Recently a new means of extracting subjects’ intent by 

means of source analysis has been suggested by applying the 

equivalent current dipole model and cortical imaging 

technique to a human subject undergoing left or right hand 

movement imagination [17]. Such inverse solutions from the 

scalp EEG provide reconstructed source distributions over 

the source domain, which may be regarded as an alternative 

representation of intracranial recordings, that compensates 

the distortion and smearing effect caused by skull low 

conductivity and volume conduction effect [5], [9].  

      In the present study, we propose the two-equivalent-

dipole model for source analysis of BCI applications, and 

test the hypothesis, in a group of four human subjects, that 

the source analysis methods can aid the classification of 

motor imagery by revealing the activity of the brain, thus 

facilitating BCI from single trial scalp EEG data. 

 

II. METHODS 

A. Data Description  

      The EEG dataset used in this study was made available 

by Dr Allen Osman of University of Pennsylvania [13]. 

EEG data were recorded from 59 channels placed according 

to the international 10/20 system with a sampling rate of 100 

Hz. Subjects were asked to imagine either left or right hand 

movement (each subject 180 trials, 90 left, 90 right). Each 

trial epoch lasted 6 seconds as shown in Fig. 1. 

      For each trial, EEG data were recorded from all 59 

electrodes but since we were only interested in the activity 

of sensorimotor cortex, the signals from 15 channels over 

the sensorimotor area were used in the present study. 

 

B. Data pre-processing 

      1) Surface Laplacian filtering: The surface Laplacian 

method [1], [8], [11], which derives the second spatial 

derivative of the instantaneous spatial potential distribution, 

serves as a high-pass spatial filter and attempts to accentuate 

localized activity and reduce diffusion in multi-channel 

EEG. 

      2) Time–frequency analysis: Each trial lasts 6 seconds 

but not all time points of this 6-second period carry 

information about the difference between left and right hand 

movement imagination. In addition, the desynchronization 

phenomenon during motor imagery tasks is highly 

frequency related.  

      With the aid of TF representation, we can obtain the 

time-varying energy of the signal in each frequency band 

[18] and choose the time window and frequency band in 

which the largest difference between right and left hand 

movement imagination appears. 

      In this work, we chose the time window from 4 s to 5.5 s 

and frequency band from 8-12 Hz and used a fifth-order 

Butterworth filter for temporal bandpass filtering.  

      3) Noise normalization: The EEG recordings from all 

sensors were normalized by their corresponding noise level 

which was estimated from certain time points taken from 

histographic analysis of the data (for details refer to [4]) and  

 
Fig. 1. Time sequence of one trial epoch of the experiment. 
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the original data were then transformed to signal-to-noise-

ratio (SNR) values by normalization of the measured signals 

to their corresponding noise level, yielding unit free 

measurements. 

      4) Independent component analysis: Independent 

component analysis (ICA) is a statistical method for finding 

underlying components from multidimensional data that are 

statistically as independent from each other as possible [3].  

       In the present study, fixed-point algorithm was used for 

ICA [12]. Before implementing ICA, singular value 

decomposition (SVD) was used for decorrelation. This 

procedure can speed up the iteration process of ICA by 

setting all singular values which are below a certain 

threshold to zero.  

  At this work, the first three components of ICA were 

used for source reconstruction.  

 

C. Source reconstruction 

   The purpose of source reconstruction is to provide 

information about the electrical sources generating the scalp 

EEG by solving a so-called inverse problem [6]. In the 

present study, the two-equivalent-dipole source model was 

used to approximate brain electrical sources induced by 

motor imagery. Each dipole is movable within the brain and 

is characterized by 6 parameters per time point, namely its 

location and moment. The goal is to estimate these dipole 

parameters that can best explain the observed potentials in 

the least square sense, in other words, to minimize the 

residual error [10],   
2
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where )(LH  is the lead field matrix as a nonlinear function 

of dipole location, j is the dipole moment and M
~

 represents 

the ICA processed data. 

 

D.   Classification Criteria 

   As mentioned before, during motor imagery, due to a 

decrease in synchrony of the underlying neuronal 

populations, a decrease of power appears in the µ rhythm of 

the contralateral side of the brain. Such a decrease of power 

turns to the phenomenon of showing stronger activity on the 

ipsilateral side. Therefore, the equivalent dipoles 

corresponding to the noise-normalized data shall appear or 

be stronger on the ipsilateral side of the brain. Based on this 

hypothesis, the following classification rules were adopted 

in the present study: 

  First we obtain the two-equivalent-dipole solution at the 

time point with the largest SNR. If both dipoles are located 

on the same hemisphere (which happened in most cases), we 

conclude that movement imagination is correspondent to 

that side. If the dipoles don’t appear on the same hemisphere 

(e.g. one appears on the left and one on the right), we look 

for the hemisphere with stronger source activity. We used 

the single dipole model for these cases.  

III. RESULTS 

 

      We have tested the present source analysis based BCI 

algorithm on the data recorded from four human subjects. 

Fig. 2 shows examples of the two-equivalent-dipole 

solutions of the left hand movement imagination (MI) and 

right hand MI, displayed on a typical brain model. Since the 

source analysis was based on the spherical head model, no 

anatomic data were attempted to be incorporated into the 

source analysis.  

      To statistically test the present method, all 180 trials in 

each subject were analyzed, and results obtained directly 

from the source analysis without training. The maximum 

accuracy, obtained for subject #2, is 84.44% and the average 

accuracy across the four subjects is 80.00%.    

         

IV. DISCUSSION 

 

     In the present study, we have tested in a group of four 

human subjects the hypothesis that source analysis methods 

such as dipole localization can be employed for 

classification of motor imagery tasks in BCI applications. If 

these methods could be used for this purpose, we can exploit 

their unique characteristics of detecting the source activity 

within the brain thus substantially reducing the distortion 

problem caused by the low conductivity of the skull and 

making the classification easier. 

      The present results are promising and show that 

reasonable classification accuracy can be achieved by this 

simple classification rule. In the present study the average 

classification rate of 80% and maximum of 84.44% were 

achieved in four human subjects. This result is reasonably 

positive because subjects didn’t have any training involved 

and all the 180 trials provided by the UPenn database, have 

been used without rejecting any “bad” trial. The source 

analysis approach, in which EEG inverse solutions are used,                                    

                                                                                                                                      

 
 

Fig. 2 Examples of estimated two-equivalent-dipole solutions 

corresponding to trials of left hand movement imagination (first row) and 

right hand movement imagination (second row). Note that the locations 
and moments of the equivalent dipoles varied from trial to trial, due to the 

low SNR of single trials. 
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promises to provide a useful alternative to machine learning 

for BCI applications. 
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