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Abstract – We have improved upon a Time-Frequency 
approach of classification of motor imagery (MI) tasks 
for brain-computer interface (BCI) applications. 
Through off-line data analysis on data collected during a 
“cursor control” experiment, we evaluated the 
capability of our improved method in revealing the 
major features of the EEG control and enhancing MI 
classification accuracy. The pilot results in a human 
subject are promising, with an accuracy rate of 92.1. 

 
I. INTRODUCTION 

The ultimate goal of brain-computer interface (BCI) 
techniques shall be to provide those people with severe 
motor disabilities alternative means of communication and 
control [1]. Typically, an EEG-based BCI system extracts, 
from scalp-recorded EEG, features encoding human 
intention and conveys the resulting control signals to the 
external world. One type of brain-computer interfaces is 
based on the detection and classification of the change of 
EEG rhythms during different motor imagery (MI) tasks, 
such as the imagination of left- and right-hand movements. 
The accuracy of MI classification directly determines the 
performance and reliability of such BCI applications, and 
thus is of importance. Recently, we have developed a new 
approach in our laboratory for motor imagery classification 
by means of a weighted time-frequency scheme in an 
attempt to define a novel and improved EEG-based BCI [2-
3]. Furthermore, we have proposed a time-frequency 
approach [4] and evaluated its capability in enhancing the 
accuracy of motor imagery classification in comparison 
with the online performance using BCI2000 [5]. 

    In the present study, we propose a new time-frequency 
approach to enhance the performance of BCI. 
  

II. METHODS 
A.  Data description 

The scalp EEG signals were recorded from 32 
electrodes, placed over the upper hemisphere with a 
sampling rate of 200Hz, during an online cursor control 
experiment utilizing the BCI2000 – a general-purpose 
system for BCI research [5]. Specifically, a subject sat at a 
monitor and watched a cursor move continuously from left 
to right across the screen. A vertical target bar randomly 
appeared near either the upper-right corner or the lower-
right corner. The subject attempted to deflect the cursor up 
or down to hit the bar by imagining left- or right-hand 
movement, which was accomplished   by an online   BCI 
process that responded to subject’s intention based on mu 
rhythm (8-12Hz) features [5,6]. Nine electrodes over the 
somato-sensory cortex (the primary cortical region related 
with motor-imagery neural activity) were selected from the 
32 electrodes for off-line data analysis. The off-line data 
analysis on a subject ( a 23 year old female ) is presented in               

 
 

this paper. 
Each trial began with a 1 second period in which the 

target appeared on the screen without the cursor. During the 
subsequent 4 seconds, the cursor appeared and moved 
across the screen, with the subject performing the left- or 
right-hand motor imagery task. The next 1 second time 
interval consisted of both the cursor and the target 
remaining on the screen if the subject successfully ‘hit’ the 
target else, in the case of a ‘miss’, the cursor remained and 
the target disappeared. The final 1 second interval consisted 
of a blank screen.  
       The subject completed 480 trials evenly divided 
between left- and right-hand imagination. The experiment 
was carried out twice a week for a minimum of three weeks. 
 
B.  Preprocessing 

During the off-line data analysis, the recorded EEG 
signals were sequentially preprocessed by applying surface 
Laplacian filtering, frequency decomposition and ERD/ERS 
feature extraction. 

Scalp recorded EEG represents the noisy spatial 
overlap of activities arising from very diverse brain regions. 
Surface Laplacian filtering attempts to accentuate localized 
activity and reduce diffusion in multi-channel EEG. 
Assuming that the distances from a given electrode to its 
four directional neighboring electrodes are approximately 
equal, the surface Laplacian can be approximated by 
subtracting the average value of the neighboring channels 
from the channel of interest as Eq(1). 
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where Vj is the scalp potential EEG of the jth channel, and 
Sj is an index set of the four neighboring channels.  

The EEG component from 6 to 30 Hz was further 
decomposed into multiple frequency bands using a 
constant-Q (also called proportional-bandwidth) scheme [2]. 
Specifically, we constructed a set of fourth order 
Butterworth band-pass filters, each of which span the 
indicated octaves with the ratio (Q) of the center frequency 
to the bandwidth being chosen to be a constant. The 
neighboring frequency bands had certain overlapping to 
allow a proper redundancy of signals.  

We delineated the event-related desynchronization 
(ERD) and the event-related synchronization (ERS) features 
[7] within each frequency band by extracting the envelope 
of instantaneous powers of decomposed signals [2]. The 
ERD/ERS features were further simplified by down-
sampling the envelope, since the high frequency (>5Hz) 
component can be ignored for most envelopes (Details see 
[2]).  
 
 



C.  Classification by correlation of spatiotemporal patterns 
             Signals from 9 electrodes were used in the 
classification. Each signal was decomposed into 13 
frequency bands and 13 envelopes were extracted from the 
13 decomposed signals, i.e. a spatiotemporal pattern of a 
trial was composed of 117 envelopes. The 117 envelope 
vectors were connected in order of electrode, i.e. F3, F4, Fz, 
C3, C4, Cz, P3, P4, Pz, and the 13 envelope vectors of each 
electrode vector were connected in order of frequency, to be 
a row vector. The row vector was represented as p. Two 
types of averaging vectors, PL and PR, were made using 
training data to calculate the correlation, where the 
subscript L or R stood for the tasks of left or right-hand 
imagined movements. Correlation coefficients C = C(p,P) 
were calculated using (2). 
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Where p  and P  denote the mean values of p and P 
respectively.                                             
 
D.  Method-I: Classification by correlation of 
comprehensive vectors with time-frequency spatial 
information 

       We introduced a comprehensive vector with time-
frequency spatial information. The algorithm of this method 
is as follows. First, the same PL and PR vectors in section C 
are made, and the values of the correlation coefficients 
between two envelopes with the same electrode and the 
same frequency consisting of PL and PR are calculated. 
When the values are larger than a threshold C0, the 
corresponding envelope data are deleted from both PL and 
PR. The value of C0 is determined to give good classification 
accuracy in the training data. ****** Next, the remaining 
envelope vectors are connected to be a row vector for PL 
and PR, and the two reconstructed vectors are denoted Pc,L 
and Pc,R  respectively. The test vectors, pc, are constructed 
using its envelope data that are the same frequency and 
electrode as PL and PR. The classification of left or right is 
determined by the value derived from (3), i.e.  dI=1 and -1 
denote left and right respectively. 
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E.  Method-II: Classification method using envelopes of the 
decomposed EEG signals in mu and beta frequency bands 

       The amplitudes of the envelopes in mu (8–12 Hz) and 
beta (13–28 Hz) frequency bands change according to hand 
movement. This feature is used in method-II to infer left or 
right hand that the subject imagined. At first, two signals 
that reflect the hand movement best are detected. Those 
were the signals recorded from electrode P3 and P4 for this 
subject.  The basic algorithm of this method is a comparison 
of the integration value of the two signals. Generally, there 
is individual difference in the frequency band reflecting the 
hand movement. Therefore, proper frequency bands of 
envelopes are detected. In the present study, the values of 
center frequencies of the bands were about 9, 10, 12, 13, 15, 

18 and 20 Hz. Furthermore, in order to remove an influence 
of background EEG that prevents the inference of imagined 
hand, a threshold value is set to the amplitude of the 
envelopes for the integration in case of necessity. These 
values are determined using training data set.  The values of 
integration were calculated using (4) and (5).  
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where )(3 tvP
m and )(4 tvP

m  are envelopes of center 
frequency m, and F is an index set of the center frequencies. 
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The classification of left or right is determined by the value 
derived from (6), i.e. dII=1 and -1 denote left and right 
respectively. 
 
F.  Method-III: Classification method using method-I and II. 
       There were several trials for which method-II returned 
more accurate results than method-I. However, there were 
also several cases to the contrary. In method-III a trial was 
first inferred by method-I. Next, the result was reexamined 
using method-II. In the reexamination, six threshold values 
were used to adopt the result of method-I or II. Three values 
(IL, CLL and CRL) were used for the trial to infer imagination 
of left hand movement. The other three values (IR, CLR and 
CRR) were used for the trial to infer imagination of right 
hand movement. In the reexamination procedure, only the 
trials in which methods I and II differed in result were 
reexamined. For trials that were reexamined, the three 
values of IP4-IP3, C(pc, Pc,L) and C(pc, Pc,R) were compared 
with three corresponding threshold values. For example, for 
the trial that inferred imagination of left hand movement, 
the values of IP4-IP3, C(pc, Pc,L) and C(pc, Pc,R) were 
compared with those of IL, CLL and CRL, respectively. The 
six threshold values were determined to correct the 
incorrect inference results from the training data set.  
 

III. RESULTS 
       The classification accuracy rates were calculated 

using the three aforementioned methods and the results are 
shown in Table I. The values in the parenthesis of the 
columns are the value of threshold C0. The rates calculated 
by method-I, II and III are compared with that of BCI2000. 
As can be seen in Table I, method-III has enhanced 
accuracy rate compared to method-I.  
 

TABLE I 
ACCURACY RATES [%] OF 1 SUBJECT 

BCI2000 Method-I Method-II Method-III 
83.3 90.8 85.0 92.1  

 
 

IV. DISCUSSION 
    The present study suggests a method to improve the 

time-frequency approach for an EEG-based Brain-
Computer Interface. Improving the approach, we can 



further enhance the performance of the BCI. Our pilot study 
in a human subject indicates an increase in the classification 
rate from 90.8% (previous time-frequency approach) to 
92.1%. Overall, the performance was enhanced from 83.1% 
(BCI2000) to 92.1%. An additional advantage of the 
previous time-frequency approach, the short calculation 
time (about 0.3sec/trial), is preserved with this new method. 
Therefore, the present method is suitable for 
implementation in on-line experiments. In summary, this 
pilot study is promising and suggests the time-frequency 
approach merits further investigation to enhance the 
classification accuracy of EEG-based BCI systems.  
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