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Abstract— Causality analytic techniques based on 
conditional mutual information are described.  Causality 
analysis may be used to infer linear and nonlinear causal 
relations between selected brain regions, and can account for 
identified non-causal confounds.  The analysis results in a 
directed graph whose nodes are brain regions, and whose edges 
represent information flow.  This causal information measure 
in principle should handle arbitrary nonlinear interactions 
without presupposing particular models of interaction.  

 
Keywords—Functional connectivity, causality, multivariate 

time series analysis 
I.  INTRODUCTION 

 There is a widespread belief that the brain is 
organized at the system level as a collection of semi-
independent functional modules that dynamically establish 
interconnections during self-organization of cognition and 
behavior.  This idea has emerged as an important paradigm 
for motivating research in systems, cognitive, and imaging 
neuroscience ([2], [4], [24]), and also for the understanding 
of clinical disorders such as schizophrenia ([1], [14], [35]) 
and autism ([16], [18]).  Consequently, there is considerable 
interest in effective connectivity analysis [9] with the intent 
of teasing apart causal relationships in large-scale brain 
networks.  Methods of effective connectivity analysis 
(typically applied to fMRI data) include structural equation 
modeling [23], nonlinear PCA [10], and coupled Volterra 
equations [4].  There are various methods for measuring 
associations between a pair of EMEG time series, and the 
most popular of these are linear measures, such as 
correlation.  In the frequency domain, the phase of the linear 
coherence function may suggest a temporal lead or lag 
relationship between spontaneous EMEG or ECoG time 
series ([21], [33]).  Analogous linear measures for event-
related data are event-related covariance [11] and event-
related coherence [32].   

However, there are two salient limitations to measures 
like correlation and coherence.  First, these measures of 
predictability are necessary but not sufficient for estimating 
causality, because they do not exclude possible non-causal 
confounds introduced, for example, by estimator crosstalk or 
volume conduction.  Second, a limitation of all linear 
measures is the underlying assumption of Gaussian 
statistics, which is known to be violated in epilepsy [20], 
[26], and is probably invalid for many other areas of brain 
dynamics as well.   

In this paper, we describe analytic techniques to infer 
linear and nonlinear causal relations between selected brain 
regions, after accounting for identified confounds.  Causality 
analysis [12] can result in a directed graph whose nodes are 
brain regions, and whose edges represent information flow.  

This causal information measure in principle should handle 
arbitrary nonlinear interactions without presupposing 
particular models of interaction. Related measures applied to 
neurophysiological time series are described in [4], [6], [22], 
[26], [19], [8].    

 
II.  METHODS 

In order to estimate casual interaction between brain 
regions using data obtained non-invasively from EMEG, we 
must first establish a suitable method for estimating the state 
of selected brain regions of interest (ROIs), the state space 
representation.  Then, causal interactions may be estimated 
using an extension of mutual information measures. 

A. State space representation 
 Local linear estimators, such as REGAE [27] or 

LCMV beamformers [12] produce multivariate time series 
estimates for a brain region of interest 
(ROI) T

1( ) [ ( ) ( )]dt r t r t=r , where d is the estimator 
dimension.  If a differential equation governs the dynamics 
of the time series, then regardless of whether the differential 
equation is known, it is reasonable to think of the dynamic 
state of the time series at time t as the vector of time 
derivatives up to the order of the differential 
equation, (0) ( ) T[ ( ), , ( )]r t r tκ .  Then the differential equation 
specifies the dynamic rule for updating the state of the time 
series.  In practice, however, only the (0) ( ) ( )r t r t=  time 
series is available at discretely sampled intervals, with the 
consequence that it is required to estimate the higher order 
time derivatives from multiple time samples in a 
neighborhood of t.  Moreover, real time series contain noise, 
and susceptibility to noise increases with the order of 
differentiation.  Several methods may be applied 
successfully for state space representation that can overcome 
these problems, including delay vectors ([25], [31]), singular 
spectrum analysis [3], and complex demodulation [25].  

B. Conditional mutual information (CMI) 
Conditional mutual information (CMI) is the essential 

information theoretic concept used in defining causal 
information.  CMI is based conceptually on probability 
densities on vector spaces, multivariate differential entropy, 
the Kullback-Leibler information divergence, and mutual 
information, each described in this section. 

Probability densities on vector spaces.  Let ()p  be a 
given probability density function defined on a real or 
complex valued vector space, X .  If 1X  and 2X  are 
mutually orthogonal and complementary subspaces of X  
(i.e., X is the direct sum of 1X  and 2X , 1 2= ⊕X X X ), then 
given ∈x X  we may write 1x  as the projection of x  to 1X , 
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2x  as the projection of x  to 2X , and 1 2( , )=x x x .  The 
marginal densities are 

2 1
1 1 2 2 2 1 2 1( ) ( , ) , ( ) ( , )p p d p p d≡ ≡∫ ∫X X

x x x x x x x x      (1) 

1X and 2X  are p-independent if (and only if) ()p can be 
factored as 1 2 1 2( , ) ( ) ( )p p p=x x x x  for all 1 2( , )∈x x X . The 
conditional density of 1x  given 2x  is 

1 2
1 2

2

( , )( | )
( )

pp
p

≡
x xx x

x
                    (2) 

If 1X  and 2X  are p-independent, 1 2 1( | ) ( )p p=x x x . 
Another form of equation (2) 

is 1 2 1 2 2( , ) ( | ) ( )p p p=x x x x x , which can be written more 
generally as the chain rule for obtaining the joint density as 
a product of marginal and conditional densities: 
If 1 m= ⊕ ⊕X X X , then 

1

1 1 2

( , , )
    ( ) ( | ) ( | , , )

m

m m m m

p
p p p−

=x x
x x x x x x

                   (3) 

In particular, if each component i ix=x  is a scalar, note that 
each factor on the right-hand side is effectively a univariate 
density.   

The independence distribution of ()p  for a given vector 
space decomposition 1 m= ⊕ ⊕X X X  is defined 
as 1 1 2( , , ) ( ) ( ) ( )m mp p p p≡x x x x x : ()p  selectively 
destroys all relationships that may exist in ()p  between 
subspaces 1 2{ , , , }mX X X . 

Multivariate differential entropy.  The negative log 
density, log ( )p− x , measures the “unexpectedness” of 
observing x  for a random draw from ()p .  (The particular 
base is not critical; we use the natural logarithm, base e ).  
The unexpectedness of observing x  approaches 0 as ( )p x  
approaches 1; it moves toward +∞  as ( )p x  approaches 0.  
The Shannon entropy ([7], [30]) is the expectation of the 
negative log density 

[ ]( ) E log ( ) ( ) log ( )p pH p p p d≡ − = −∫X
X x x x x     (4) 

which measures “expected unexpectedness” or uncertainty. 
Because the variables are continuous, this is known as 

differential entropy.  By contrast with discrete entropy, 
differential entropy is not an absolute measure: It is relative 
to the coordinate system [30].  For example, the differential 
entropy can switch from positive to negative simply by 
changing measurement units: There is no absolute zero, and 
the entropy sign (positive or negative) has no special 
significance eo ipso.  This “floating reference” issue may be 
addressed by explicitly introducing some known distribution 

()q  against which ()p  is compared. 
The Kullback-Leibler (KL) information divergence [19] 

of density ()p  relative to density ()q  is 

||
( )( ) E log ( ) E [log ( )]
( )p q p p p

pD H q
q

 
≡ = − − 

 

xX X x
x

  (5) 

which is a non-metric distance of ()p  from ()q : It is 
nonnegative, and zero only if  () ()p q=  (but is non-
symmetric, and does not satisfy the triangle inequality).  
This measure is also known as relative entropy, noting that 
(5) differs from (4) by introducing ()q  as a reference 
distribution (with sign reversal to produce nonnegative 
results).  KL divergence measures the information available 
for discriminating the distribution of interest ()p  from the 
reference distribution ()q . 

The conditional entropy of 1X  on 2X  is obtained by 
combining (2) and (4): 

1 2
1 2

2

1 2 2

( , )( | ) E log
( )

( , ) ( )

p p
pH

p
H H

 
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x xX X
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X X X
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Likewise, the conditional KL divergence of 1X  on 2X  
combines (2) and (5): 

1 2
|| 1 2

1 2

|| 1 2 || 2

( | )( | ) E log
( | )

( , ) ( )

p q p

p q p q

pD
q

D D
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Mutual information (MI).  In particular, given subspaces 
1X  and 2X  (as above) we may choose ()q  to be the 

independence density 1 2 1 2( , ) ( ) ( )q p p=x x x x .  Then the 
mutual information of 1X  and 2X  in ()p  is defined as the 
KL divergence of ()p  relative to the independence density: 

1 2 1 2 1 2

1 2

1 2

1 2 1 2
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   (8) 

[7].  Thus, mutual information increases with p-dependency 
and is zero only when 1X  and 2X  are p-independent. 

Conditional Mutual Information (CMI).  We are now 
prepared to define the key concept of CMI.  Let 1X , 2X  and 

3X  be mutually orthogonal and jointly complementary 
subspaces of X  (i.e., 1 2 3= ⊕ ⊕X X X X ).  Then the mutual 
information of 1X  and 2X  conditional on 3X  in ()p  is 

1 2 3 1 2 3 1 3 2 3

1 2 3

1 3 2 3

1 3 2 3 3 1 2 3

( , | ) ( ( , | ) ( | ) ( | ))
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X X X x x x x x x x

x x x
x x x x

X X X X X X X X
which reduces to ordinary mutual information (8) when 

3X is p-independent of 1X , 2X , and 1 2⊕X X . 
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C. Causality 
Let 1P  and 2P  be parallel processes with associated 

state spaces 1X  and 2X , respectively.  A joint realization of 
the processes gives rise to two time series so that 1( )tx  and 

2 ( )tx  are the state vectors of the processes at time t .  (For 
example, these may be the estimated states of activity in 
brain regions ROI 1 and ROI 2 at time t .)  Based on 
observations of states of process P1 and joint observations of 
states of process P2 at relative time τ earlier (i.e., τ is a time 
lag from 2P  to 1P ), we seek to quantify the information 
available at the earlier state of process 2P  about the later 
state of process 1P .   

Predictive information (or predictive mutual 
information, PMI) is defined as the mutual information of 
states 1( )tx  and 2 ( )t τ−x , 1 2( ( ), ( ))I t t τ−X X , which 
quantifies the predictability of the state of the first process 
having observed an earlier state of the second process.  (Due 
to symmetry, it also quantifies “retrospective predictability” 
of the earlier second process state having observed a later 
first process state.)   
 
Fig. 1.  Arrows a and e represent 
predictive self-information; 
arrows b and d represent zero-lag 
cross-information; and diagonal 
arrow c represents the predictive 
cross- information. 
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Causal information (or causal conditional mutual 
information, CCMI) is defined as the conditional mutual 
information of states 1( )tx  and 2 ( )t τ−x  conditioned on 
states 1( )t τ−x  and 2 ( )tx  —

1 2 1 2( ( ), ( ) | ( ), ( ))I t t t tτ τ− −X X X X — which discounts as 
non-causal any predictability due to instantaneous between-
process states and time-lagged within-process states (see  

Fig. 1).  These may be estimated in a linear fashion by 
extracting the Gaussian information content, and in a 
nonlinear fashion by extracting residual information content 
after having removed the Gaussian content. 

D. Numerical methods for entropy estimation 
Linear Entropy.  Let { | }i i ∈x x X  be a sample of N 

independent observations from an n-variate distribution with 
unknown density ()p , and let Ĉ  be the n n×  sample 
covariance matrix.  Noting that entropy estimation is 
unaffected by the mean, we assume that the distribution has 
zero mean.  Of all densities with covariance ˆ=C C , the one 
with maximum entropy [30] is the n-variate Gaussian 
density  

1
*2 2 1( ) (2 ) | | exp{ }

2

n

g π
− − −≡ − 1x C x C x                 (9) 

The entropy of a Gaussian distribution is 

1

1( ) log(2 ) log[ ]
2 2

n

g i
i

nH eπ
=

= + ∑X C               (10) 

where the notation [ ]iC  here indicates the ith singular value 
(or eigenvalue) of C .  Thus, the Gaussian entropy may be 
estimated from the sample covariance matrix using purely 
linear computational methods, such as singular value 
decomposition: Gaussianity and linearity go hand-in-hand.  
The first term of  (10) is a constant that does not depend on 
the particular sample{ }ix ; it depends only on the dimension 
n of space X . 

Recalling that differential entropy is relative to the 
coordinate system: Given different coordinate 
representations of the same sample, such as { }ix  and{ }j′x , 
there is a linear transformation for each sample—the inverse 
square root of the sample covariance matrix—that converts 
all observations to a normalized, unitless system; 
namely 1/ 2 1/ 2ˆ ˆ

j j
− −′ ′=C x C x .  This is descriptively called a 

sphering transformation because the sample covariance of 
the normalized observations is the identity matrix, I , and 
thus the corresponding Gaussian distribution is hyper-
spherical (about the origin) with standard deviation 1.  
Finally, we note that the sample-dependent second term of 
(10) is zero after conversion to normalized coordinates.  
Equivalently, the sphering transformation has equalized all 
variables while removing all linear relationships between 
them: After normalization, there is no further linear 
information content to be extracted from the sample.  Thus, 
we define the linear information content of a sample as the 
second term of (10), which is the amount of entropy 
reduction after normalization. 

Nonlinear Entropy.  The problem that remains is to 
estimate the entropy of the sphered data 
sample,{ | }i i ∈z z Z .  One suitable numerical methods is the 
straightforward leave-one-out resubstitution method [15] 
that utilizes a Gaussian kernel probability density estimator: 

1

2

/ 2 2
1

1( ) log ( )

| |1 1 1  log exp
1 (2 ) 2

N

n i i
i

N
j i

n n
i j i

H p
N

N N π σ σ

=

= ≠

= −

  −  = − −  
−     

∑

∑ ∑

Z z

z z
                 

The first summation estimates the expected value of 
log ( )p− z  based on the sample average of N observations.  

The probability density at each observed sample location is 
estimated as the average of Gaussian kernels (isotropic with 
standard deviation σ ) centered on the other observed 
samples (excluding the location where the evaluation takes 
place).  In a simulation study, we found empirically that 

1σ =  is optimal for sphered data.  If no exceptions are 
found—or, best case—if optimality of 1σ =  could be 
proved in general, then this estimator has no other free 
parameters: The nonlinear entropy (as well as the linear 
entropy) would be “unique” measures. 
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III.  CONCLUSION 

 
 In conclusion, we have outlined a “successive 
approximation” approach to causality via conditional mutual 
information that discounts the effects of non-causal 
conditions.  Preliminary results with these methods have 
been reported using simulated data [27] and also with 
clinical epilepsy data [28]. 
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