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Abstract— A multi-stage algorithm for detecting and imaging
distributed neural activity is presented. The signal of interest
is assumed to originate from an unknown patch of cortex.
The signal is modeled as the mean component of noisy
measurements, where the noise is assumed to be Gaussian with
unknown spatial covariance Rs and known temporal covariance
Rt. We define patches on the cortical surface and perform
a detection step using the generalized likelihood ratio test to
identify the patch with the most significant activity. This patch
identification step is performed in beamspace to reduce the data
dimension and increase the effective signal-to-noise ratio. Next,
the unknown signal originating from the patch is estimated
using the maximum likelihood criterion. Finally, we reconstruct
an image of activity within the patch by solving a local inverse
problem using the estimated patch signal. We demonstrate
the effectiveness of our method using both real and simulated
evoked response data.

Keywords— MEG inverse problem, multi-stage source imaging,
beamspace, cortical bases, maximum likelihood.

I. INTRODUCTION

Detection and imaging of distributed neural activity from
electro- and magnetoencephalographic (EEG/MEG) data is
extremely challenging due to the severe ill-posedness of the
inverse problem and relatively low signal to noise ratio (SNR)
common in EEG/MEG. The often used equivalent current
dipole (ECD) model is inadequate for representing distributed
activity because the extent of the source cannot be determined.
On the other hand, nonparametric distributed source models
lead to underdetermined, nonunique solutions to the inverse
problem. Cortical patch [1], [2] and multipole [3], [4], [5]
source models have been proposed to overcome these limita-
tions.

We present a multi-stage approach for source detection
and imaging using cortical patch models, in which the best
patch is identified using the generalized likelihood ratio test
(GLRT), the signal originating from the patch is estimated
using the maximum likelihood (ML) criterion, and the activity
within the patch is imaged by solving a local inverse problem.
The ML criterion has been applied to EEG/MEG source
localization and signal estimation in [6], [7]. Our application
is distinguished by the cortical patch signal model. Multi-stage
detection and imaging methods have also been proposed using
dipolar [8], [9] and multipolar [5] source models. Both [8] and
[9] involve a coarse to fine search strategy, while [5] involves
first estimating the multipole parameters and then using the

estimates to identify a source distribution.
A key aspect of our approach is the use of spatial basis

function expansions for representing the signal originating
from each cortical patch. Fewer spatial bases are employed for
patch localization than signal estimation in order to increase
the differentiation between candidate patches. Localization is
performed after transforming the data into beamspace [10],
[11], which reduces data requirements and improves localiza-
tion performance [10]. The patch that has the largest GLRT
statistic is declared to contain the source of activity and the ML
estimate of the signal from this patch is calculated. A relatively
large number of spatial basis functions is employed for signal
estimation. In this paper, the distribution of cortical activity
within the patch is estimated using a minimum norm solution
to the local inverse problem. Simulated and real somatosensory
evoked response data are presented to demonstrate the method.

Bold uppercase and lowercase symbols represent matrix and
vector quantities, respectively. Superscript T and -1 are used
to denote matrix transpose and matrix inverse.

II. METHODS

A. Data model

We assume the signal component of the data is repeatable
across epochs and randomness from epoch to epoch is due to
noise. Given J epochs of spatiotemporal measurements from
N sensors and T samples in time, we represent the jth N×T
data matrix Xj as

Xj = UACT + Nj , j = 1, . . . , J. (1)

where the mean, or signal, S = UACT , is expressed in terms
of a known N × P spatial basis matrix U, a known T ×
L temporal basis matrix C, and an unknown P × L signal
amplitude matrix A. Nj is the noise component, assumed to
be zero-mean Gaussian with unknown spatial covariance Rs

and known temporal covariance Rt. The noise is assumed
independent across epochs. Without loss of generality Rt = I

is used in the sequel.
The columns or spatial distribution of the signal matrix S

lies in the space spanned by the columns of U, while the rows
or time evolution lies in the space spanned by the columns of
C. The temporal basis matrix C is constructed to represent
signals from the frequency band of interest, as suggested in
[7]. Each cortical patch is represented by a different set of
spatial bases U and amplitude parameters A. Construction of



U is described in subsection II-C while estimation of A is
described in subsection II-E.

Concatenating all data epochs together, we form a new
N × JT data matrix

X = [X1 X2 . . . XJ ]

= UADT + N (2)

where DT =
[

CT CT . . . CT
]

and N = [N1 N2 . . . NJ ].
We write the Gaussian probability density for X as
X ∼ N

(

UADT ,Rs ⊗ I
)

[12].

B. Beamspace transformation

Beamspace processing involves projecting the data into a
smaller dimensional space with minimal loss of signal [13],
[14]. It is particularly useful for applications with limited
data samples and algorithms that involve estimating a spatial
covariance matrix from the data. It has been shown to produce
more stable localization results than sensor space processing
[10]. We construct the beamspace transformation F to approx-
imately span the space defined by all lead field matrices in
the anatomical region of interest, which may be as large as
the entire cortex. Following [10], the criterion for choosing
F is minimization of the mean squared representation error
(MSRE) between the sensor space and the beamspace lead
field matrices. That is, if H(θi) is the lead field matrix for a
dipolar source located at θi within a region of interest, then

F = arg min
F

q
∑

i=1

H(θi)
T

(

I− FFT
)

H(θi) (3)

= arg max
F

tr
{

FT GF
}

(4)

where G =
∑q

i=1
H(θi)H(θi)

T and F is subject to the
constraint FT F = I. The solution to (4) is to choose F as the
eigenvectors of G corresponding to the M largest eigenvalues.
The MSRE is controlled by the choice of M . The M × JT
beamspace data Z is obtained by applying the beamspace
transformation to the measurement data, Z = FT X. Then,
Z ∼ N

(

FT UADT ,Rb ⊗ I
)

, where Rb = FT RsF is
M × M .

C. Patch Construction

We define K overlapping cortical patches to completely
cover the cortical surface of interest. Denote the candidate
patches as Pk, k = 1, . . . , K. The beamspace signal con-
tributed by patch Pk is

FT Sk = UkAkD
T , k = 1, . . . , K. (5)

Here Uk is constructed by finding a basis for the space
spanned by the beamspace lead field matrices of all dipoles
in the patch. Specifically, we identify Uk by selecting the left
singular vectors of a matrix Tk formed by concatenating the
beamspace lead field matrices of all dipoles in Pk. That is, if
θk

i , i = 1, 2, . . . , qk, denotes the dipole locations in Pk, we
have

Tk =
[

FT H(θk
1
) FT H(θk

2
) . . . FT H(θk

qk
)
]

≈ UkΣkV
T
k (6)

where Uk and Vk are matrices of the left and right singular
vectors of Tk and Σk contains the corresponding singular
values. The singular value decomposition is necessary because
Tk is usually rank deficient. The number of singular vectors
selected for Uk differs for patch localization and patch signal
estimation. A relatively small number is chosen for patch
localization so that the Uk for distinct patches are better
differentiated. Once the significant patch is identified, the
number is increased to better estimate the signal originating
from that patch.

D. Patch Localization

Patch localization is accomplished by choosing the patch
associated with the maximum value of the GLRT statistics
for testing Ak = 0 vs. Ak 6= 0. The GLRT statistic is formed
by substituting maximum likelihood estimates of the unknown
parameters (Ak,Rb) into the likelihood ratio. Our derivation
follows [7] and [15]. We first introduce

ZD = ZD
(

DT D
)

−1/2

(7)

ZD̄ = ZD̄ (8)

QD̄ = ZD̄ZD̄
T (9)

with DT D̄ = 0. The transformations D
(

DT D
)

−1/2

and D̄

project the beamspace data Z onto two orthogonal subspaces.
Since the signal time evolution lies in the space spanned by the
rows of D and DT D̄ = 0, ZD contains the signal whereas ZD̄

is signal-free. QD̄ can be viewed as a noise sample covariance
matrix estimate.

The GLRT statistic for patch Pk can be shown to have the
form [15],

lk =

∣

∣UT
k Q−1

D̄
Uk

∣

∣

∣

∣

∣
UT

k (ZZT )
−1

Uk

∣

∣

∣

(10)

The patch which has the largest GLRT statistic is selected
as the one containing the source. In selecting only one patch,
we are implicitly assuming that the spatial extent of the source
is contained within the support of a single patch.

E. Patch Signal Estimation

Suppose that patch P0 is identified as the significant patch.
The signal originating from this patch is estimated by deter-
mining the amplitude parameters A0. In this stage we increase
the number of left singular vectors used as bases in U0

to minimize the signal representation error. The maximum
likelihood estimate of A0 is the solution to the minimization
problem

min
A0

∣

∣

∣

(

Z −U0A0D
T
) (

Z −U0A0D
T
)T

∣

∣

∣
(11)

which is given by [7], [15]

Â0 =
(

UT
0
Q−1

D̄
U0

)

−1

UT
0
Q−1

D̄
ZD

(

DT D
)

−1/2

(12)

The beamspace signal from P0 is thus estimated as U0Â0C
T .



F. Local inverse solution

In the last stage the estimated signal is used to reconstruct an
image of neural activity within the patch P0. The local inverse
problem on P0 is generally much better conditioned than the
original global inverse problem. Many methods can be used to
solve the local inverse problem. Here we choose the minimum
norm method for illustration. Let M0 be a matrix whose rows
contain the dipole moment time series corresponding to the
columns of T0 defined in (6). The local inverse problem for
M0 is expressed as T0M0 = U0Â0C

T . The minimum norm
solution for M0 is given by

M̂0 =
(

TT
0
T0

)

−

TT
0
U0Â0C

T

where ( · )− denotes the pseudo inverse operation.

III. RESULTS

Simulated data is obtained by generating 300 epochs of
evoked response data for each SNR level using the 74-channel
sensor configuration of the Magnes II Biomagnetometer (Bio-
magnetic Technologies, Inc.) Each epoch is 500 ms long and
contains 260 samples in time. The signal is due to a 253
mm2 patch of activity on the somatosensory cortex having
a 2-D raised-cosine spatial extent. The signal time evolution
is a Gaussian pulse of 22 ms full-width-at-half-maximum and
peak amplitude at 148 ms relative to the onset. Noise from the
prestimulus portion of evoked response data from a subject
is added to the signal to obtain SNRs of 0, 5, 10, and 20
dB, where the SNR is defined as tr

{

ST R−1

s S
}

. Figure 1
depicts the average of 300 epochs for SNR = 10 dB after
bandpass filtering between 1 Hz and 30 Hz. The beamspace
transformation F is constructed to pass signals originating
from a fairly large portion of cortex centered on the left
hemisphere somatosensory region (identical to that in [10]).
The beamspace dimension is 13, which is about a factor of
six reduction from the original dimension of 74.

We construct four sets of cortical patches spanning the left
hemisphere with average support of 70 mm2 (3620 patches),
270 mm2 (1208 patches), 590 mm2 (586 patches), and 1000
mm2 (341 patches). There is approximately fifty percent
overlap between adjacent patches. The number of spatial basis
functions associated with each patch is chosen as the number
of singular values in (6) required to represent a given fractional
signal level α. That is, we choose P as the smallest integer
so that

∑P
i=1

σi/
∑M

i=1
σi ≥ α.

Patch localization is performed over five realizations of
noise for each SNR level for various levels of α. This experi-
ment reveals that choosing α = 0.8 offers an excellent tradeoff
between signal representation and patch differentiation. With
α = 0.8, the three largest patch sets correctly detect the patch
containing the simulated activity in all cases, even with the
lowest SNR (0 dB). Note that with the 70 mm2 patch set the
true activity is larger than any single patch. In this case the
GLRT localized the activity to a patch within the extent of
true activity.

Figure 2 illustrates the maximum likelihood estimate of the
patch signal using α = 0.99 to determine the number of
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Fig. 1. Filtered (1-30 Hz) and averaged (300 epochs) synthetic signal plus
real noise at SNR = 10 dB.
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Fig. 2. ML estimate of the synthetic signal plus real noise at SNR = 10 dB
after localizing the patch containing the signal.

bases in the patch and an SNR of 10 dB. The improvement
over filtering and averaging (Fig. 1) is evident. Figure 3
depicts the reconstructed images of the peak patch signal
amplitude (148 ms) for the 10 dB SNR data and the 590 mm2

patch set. The true activity distribution is shown in Fig. 3(a).
Figure 3(b) depicts the minimum norm solution to the local
inverse problem based on the ML signal estimate shown in
Fig. 2 whereas Fig. 3(c) depicts the solution using the filtered
and averaged signal shown in Fig. 1. The activity estimated
using ML is blurred relative to the true distribution, but has
approximately correct amplitude, while the activity estimated
from the filtered and averaged signal does not resemble the
true activity and is four orders of magnitude larger.

We also collected 300 epochs of evoked response data
using the same 74-channel configuration used to generate
the simulated data by stimulating the right-hand index finger
of a female subject with uniform pneumatic pressure pulses.
Each epoch is 500 ms long with a 520.8 Hz sampling rate.
Figure 4(a) depicts the result of patch localization using the
590 mm2 patch set. The most significant patch is located near
the lower portion of the somatosensory region, consistent with
anatomical expectations. Figure 4(b) depicts the solution to the
local inverse problem on the patch using the ML estimate of



(a)

(b) (c)

Fig. 3. Reconstructed images of patch activity for synthetic signal plus real
noise at 10 dB SNR. Patch detection is performed using the 590 mm2 patch
set. (a) True activity distribution. (b) Reconstructed activity using ML signal
estimate in Fig. 2. (c) Reconstructed activity using filter-and-average signal
estimate in Fig. 1.

(a) (b)

Fig. 4. Results for 300 epochs of index finger stimulation data. (a) Patch
localization using the 590 mm2 patch set. (b) Reconstructed activity on the
patch.

the patch signal. The distribution of activity is relatively focal,
as expected.

IV. DISCUSSION

The GLRT and ML signal estimates assume an unknown
spatial noise covariance matrix, and thus automatically incor-
porate noise whitening based on the measured data. The noise
covariance matrix required for whitening the data is estimated
from the portion of data containing the signal by exploiting
the spatio-temporal structure of the evoked response paradigm
and thus the assumption of stationarity between the pre- and
post-stimulus intervals is not required, as noted in [6] and [7].

Implementing the GLRT and ML estimation in beamspace
increases the robustness of the results, especially with low
SNR or small numbers of epochs (see [10]).

Use of spatial bases for representing cortical patches pro-
vides a flexible approach to localization and signal estimation.
It is desirable to use fewer bases for each patch in the
localization stage to increase the differentiation between the
spaces associated with each patch. The mismatch associated
with not completely representing the signal in the correct
patch is more than offset by the reduced leakage of the signal
into other patches. However, once the patch is localized, the
number of bases used to represent the patch is increased to
facilitate accurate patch signal estimation.

Patch localization significantly reduces the difficulty of
estimating the distribution of brain activity since the local
inverse problem for the patch is much better conditioned than
the global inverse problem.

REFERENCES

[1] W. Kincses, C. Braun, S. Kaiser, and T. Elbert, “Modeling extended
sources of event-related potentials using anatomical and physiological
constraints,” Human Brain Mapping, vol. 8, pp. 182–193, 1999.
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