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Abstract— A method is described that combines linear 
source estimation (beamformers) with non-parametric 
statistical significance testing to yield vector time series 
estimates for brain regions of interest.  These source time series 
are a suitable starting point for functional connectivity 
analysis. 
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I.  INTRODUCTION 
 
 One major goal of many cognitive 

electrophysiology experiments using electro- and magneto-
encephalographic (EMEG) data is the development of a 
functional connectivity analysis that benefits from the 
millisecond resolution inherent in EMEG data.  Ideally, this 
functional connectivity analysis should yield information 
about the coupling between brain regions that are 
responsible for the phenomena under investigation.  For a 
number of reasons, including non-ideal detector sensitivity 
and specificity, as well as the inherent limitations imposed 
by the non-uniqueness of the bioelectromagnetic inverse 
problem, there are well-recognized advantages in posing this 
analysis problem probabilistically, and subjecting the results 
to statistical significance testing.  In this paper, we propose a 
framework that combines beamformer methods ([1], [4], 
[9]) with nonparametric significance testing ([5], [6], [7]) to 
generate the source time series that may be used as the basis 
for functional connectivity analysis. 

We assume that a paradigmatic evoked response dataset 
consists of continuously recorded multichannel EMEG data, 
including a set of labeled events (either stimuli or responses) 
at known times.  We further assume that the desired 
outcome of the data analysis consists of a set of brain 
regions whose temporal activity has been estimated.  These 
source time series then become the input for functional 
connectivity analysis.  We further assume that each step of 
the analysis chain should be subject to significance testing.  

After the data have been preprocessed (e.g., filtering 
and artifact suppression), the conventional analysis sequence 
proceeds to averaging over trials that satisfy suitable criteria, 
either in the time or time-frequency domains.  Then peaks 
are identified, often by visual inspection, for source analysis.  
Dipole source analysis is widely used [7], but this may 
require considerable user intervention, and different 
individual fitting strategies may result in different models 
that fit the same data.  Although linear methods have the 
advantage of objectivity, they do not typically result in a 
relatively small number of compact source regions of 

interest (ROIs) than can form the natural starting point for a 
functional connectivity analysis. 

 
II.  METHODS 

 
 In this section, we first review some source estimation 
methods, including some mathematical results that form the 
basis of beamformer theory. Then we show how non-
parametric significance testing with multiple comparison 
correction may be used to identify compact ROIs.  We then 
extend our beamformer discussion to estimating the time or 
time-frequency behavior of these ROIs.  Finally, we 
describe briefly some methods that may be used for 
functional connectivity analysis from source time series 
data. 

Source estimation methods seek to estimate properties 
of intracranial neuroelectric activity (location, timing, and 
magnitude) based on extracranial EMEG measurements and 
a head model such as the MRI-based finite element model.  
Overdetermined global methods seek a set of localized 
current sources that model the EMEG data. Spatiotemporal 
source modeling [7] is a typical member of this category.  
Underdetermined global methods seek an activity 
distribution over a set of current elements that cover the 
entire “source space” of the brain.  Because all current 
elements have fixed locations, linear solution techniques 
apply.  LORETA [7] and cortical surface current density 
(CSCD) estimation [1], [2] are typical examples.  These 
methods solve a coupled linear system, so errors at one 
location require compensatory errors elsewhere.   

In contrast, local methods optimize estimators on a per 
location basis, independent of estimators for other locations.  
Local methods find an estimator, a linear combination of 
EMEG channels, to estimate source activity at a location 
e.g., linearly constrained minimum variance (LCMV) 
beamformers [13], [15], that are unbiased estimators of 
either source location or source magnitude ([3], [14]).   
REGAE is an alternative brain source activity local 
estimator for selected regions of interest [9], developed in 
the context of signal detection theory. 

Gain matrix.  Given a lead field matrix L and a 
derivation matrix D, the gain matrix is =G DL .  Each 
column of G represents a topography for a single source of 
unit magnitude.  Given a source vector N∈q , the ideal 
measurement vector M∈v for that source distribution is 
=v Gq .  See  [4] for additional details. 

Beamformers. Beamformers may be classified as 
adaptive vs. non-adaptive, scalar vs. vector, distortionless vs. 
weight vector normalized vs. standardized.  Scalar 
beamformers (BFs) apply when there is one source 
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 2 of 4Table 1.  Weight vector (wT) formulae are shown for scalar beamformers.  rg is the gain vector for the rth source, a 
column of the gain matrix, G.  C is the signal space covariance.  Derivations and further details may be found in 
[4]. 
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orientation per location, else they are vector BFs.  Adaptive 
BFs utilize the signal covariance, C, while non-adaptive BFs 
assume the source space identity covariance. Distortionless, 
weight vector normalized and standardized BFs differ based 
on the gain constraints used in their derivation.  Additional 
details are found in [4], [14].   

Table 1 shows the functional form for scalar 
beamformers.  These forms would be useful, for example, 
when the solution is constrained to a single dipole per 
location on a discretized model of the cortical surface.  
When the source space is represented as a discretized 
volume, with, in general, a 3-space of current sources at 
each location, vector beamformers must be used.  In [13], 
Sekihara and coworkers provide equations for adaptive 
distortionless (equation 6 of [13]) and weight-vector 
normalized (equation 11 of [13]) vector beamformers. Each 
BF results in a different weight matrix, W.  Each column of 
W, ,r θw , represents the linear mapping that estimates a 
single source magnitude indexed by  location r and 
orientation θ, given the data (cf. equation (2)). 

Two beamformer estimators.  Beamformers may be 
used to estimate either source location or source time series.  
Formally, we can write these different estimation problems 
as   

                      ( ) ( )( )WVN WVN
ˆ arg max , ,T T=

r
r w r θ vv w r θ  (1) 

                                        ( ), dist
ˆ , Tq =r θ w r θ v  (2) 

where v is the measurement vector and r is the source 
location.  Note that the w’s are different, depending on the 
estimator.  In [4] and [14], it shown that in the presence of 
background white noise, only adaptive weight vector 
normalized beamformers ( )WVN

,w r θ  are unbiased 
estimators of source location (1), while only distortionless 
beamformers ( )dist,w r θ   are unbiased estimators of source 
magnitude (2).  In addition, it is shown in [14] that adaptive 
beamformers have better spatial resolution than their non-
adaptive counterparts.  These results imply the following 
strategy:  First use adaptive weight vector normalized 
beamformers to determine those locations whose activities 
show significant changes in activity.  Then select regions for 
subsequent analysis, using distortionless beamformers to 
estimate their source time series.  

Significance Testing.  Randomization methods for 
statistical significance testing [6] are the methods of choice 
for many bioelectromagnetic problems ([5], [7]), since they 
do not require assumptions about the underlying 
distributions. Instead the statistical distributions are inferred 
from the data.  For this reason, it is generally necessary to 
go back to single trial data when conducting within subject 
between condition significance tests. The prestimulus 
baseline data points are generally not suited for this purpose 
unless the temporal correlation in the prestimulus baseline is 
first removed. While multiple comparison corrections are 
necessary, we have found that global multiple comparison 
correction for the entire spatiotemporal source estimation 
problem results in apparently overly conservative results.  
For this reason, we propose a method for determining 
statistically significant source regions that decomposes the 
solution into its temporal and spatial domains, and tests for 
significance in each separately.  We first apply a 
significance test to the signal space topographic pattern, 
correcting for multiple comparisons over time [5] to identify 
those latencies whose global signal space topographies 
differ between conditions.  Then sources are estimated at 
these latencies, using a weight vector normalized 
beamformer to scan the set of points that span the source 
volume.  For each latency, a source map is obtained and the 
statistical significance at each source location is tested, with 
multiple comparison correction over the source volume.  
The result of this process yields a set of source volume 
locations whose activity differs significantly between the 
two conditions, at least fro the specified latencies.  Next, we 
transform these locations into ROIs for subsequent time 
series analysis. 

Regions of Interest (ROIs).  The path to ROIs begins 
with excursion sets. The excursion set is simply the set of 
points whose value exceeds a selected threshold.  Given a 
set { }1,..., NX x x= and a mapping :p X → , define the 

lower excursion set as ( ) ( ){ }:
c cp x p x X p x p< = ∈ <E [17], 

where cp is some threshold, say p=0.05. The upper 
excursion set can be defined in the obvious way. Then if X is 
a discrete topological space (e.g., a discretized vector space 
like the source volume or a discretized manifold like the 
cortical surface) we can transform the excursion set into a 
set of ROIs. Represent the space as a graph with edges 
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connecting nearest neighbors, where the edges are defined 
when the space is constructed.  For example, given a 
discretized 2D manifold with simplicial (triangle) tiling, the 
point set X consists of triangle vertices.  The nearest 
neighbor edges for each vertex consist of those triangle 
edges that connect each vertex to the vertices of triangles 
that are common to the two vertices.  Call the edge set 

{ },i jx xE e= , each edge labeled by it endpoints.  An ROI is a 

simply connected subset of the excursion set 

( ) ( ){ },:  and  for some 
i jc ci i x x jp x p p x pR x X x e E x< <= ∈ ∈ ∈ ∈E E

The ROI relation partitions the excursion set into a set of 
disjoint proper subsets.  

Time series estimation for ROIs.  Each ROI consists 
of a set of dipoles, with generally >1 dipole per set.  In order 
to estimate this time series, we can use the distortionless 
vector beamformer.  First however, we use singular value 
decomposition (SVD) to represent the ROI as a new set of 
orthogonal sources.  Let ( )RF be the gain matrix for R, such 
that the ith column of F is the gain vector for ix R∈ , and 

T=F LSR  (by SVD). Let RSL  be the (possibly truncated) 
matrix of left singular vectors of F for each of the ROIs that 
constitute the ROI set, consisting of 'N  columns.  Then a 
distortionless vector beamformer for the ROI set is given by 
([15], [13], [16])  

                        ( ) 11 1T T T
RS RS RS RS

−− −=W L C L L C                      (3) 

Applying [ ]1 '| ... |RS N=W w w  to the data matrix V, yields a 

vector estimator of the activity for the ROI set as TW V .  It 
is often useful, e.g., for functional connectivity analysis to 
reduce this vector time series to a single scalar time series 
for each ROI.  This may be done by summing at each time 
slice over the individual components, if care is taken to use 
a consistent orientation convention following the SVD, or 
by taking the r.m.s. power at each slice.  
 

IV. DISCUSSION 
 

To summarize this general analytical framework: 
1. Preprocess data (visual inspection, filtering, artifact 

correction, forward model building). 
2. Determine latencies and time-frequency neighborhoods 

at which there are significant differences between 
condition and rest (or two conditions), using 
randomization tests with multiple comparison 
correction over time. 

3. For those latencies or time-frequency neighborhoods 
whose topographies exceed significance, find those 
source locations (determined using a scanning (weight 
vector normalized) beamformer) that show significant 
differences between condition and rest (or between two 
conditions), using randomization tests with multiple 
comparison correction over the source volume. 

4. For those source volume locations that pass both 
significance tests, estimate their source time series, 
using the LCMV local estimator method. 

5. In the time and time-frequency domains, compute first-
order (e.g., average, variance, entropy) and higher-order 
(e.g., coherence, mutual information, causality) 
statistics, based on the source time series. 

6. Using the higher-order statistics, construct a functional 
connectivity model, and test hypotheses.  Optionally, 
compare the model with additional experimental 
parameters (e.g., reaction time). 
In a companion paper [9], we describe a method based 

on conditional mutual information which may be used to 
infer casual relations between time series like those 
produced by the methods described here. 
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