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Abstract—A maximum unscaled entropy solution to the spatial 
covariance inverse problem is presented, and the theory is 
applied to task-related EEG in four frequency bands.  Whereas 
the obtained second order solutions are of interest in their own 
right, this new method also may be used, in principle, to 
improve underlying source covariance and forward models 
that are used to obtain first order inverse solutions. 

 
Keywords—EEG, MEG, source estimation, correlation 

matrix, maximum entropy covariance estimation 
 

I.  INTRODUCTION 
 
 Distributed solutions to the bioelectromagnetic inverse 
problem for m electromagnetic (EEG, MEG, or combined 
EMEG) channels typically estimate a first order physical 
quantity, i.e., current density, at n oriented locations in the 
brain, where n m .  The “underdeterminacy” of the 
problem may be quantified as the log ratio of unknowns to 
knowns, i.e., 10log ( / )n m .  For example, with 200m ≈  and 

10000n ≈ , the underdeterminacy is 1.7 orders of magnitude.  
Because second order quantities such as variance or power 
may be estimated using essentially the same inverse 
methods (e.g., by squaring the first order solution), the 
underdeterminacy of the problem is not thereby increased.  
However, it doubles (e.g., from 1.7 to 3.4 orders of 
magnitude) for the full covariance inverse problem, i.e., 
estimation of ( 1) / 2n n +  source covariances given 

( 1) / 2m m +  measurement covariances.  If a solution to the 
full second order problem is sought via first order methods 
— i.e., source covariance matrix T≈S HCH , where C  is a 
measurement covariance matrix and ≈j Hv  estimates 
current density vector j given measurement vector v  — it is 
highly likely that errors in the first order solution will be 
magnified in the second order solution.  In addition, first 
order solutions are designed to use only m measurements 
rather than ( 1) / 2m m + .  These considerations indicate the 
need for an intrinsic solution to the second order problem. 
 A deeper reason for seeking a second order solution that 
is independent of particular first order solutions is that the 
latter explicitly or implicitly make assumptions regarding 
second order statistics.  For example, regional activity 
estimation (REGAE), an estimator of activity in brain 
regions of interest, explicitly assumes a Gaussian statistical 
process in the brain, characterized by a source covariance 
matrix ([1]).  Other local estimators, such as linearly 
constrained minimum variance beamformers, may be 
classified, in part, by their source covariance assumptions 
([2]).  Turning to global estimators: As noted in [3], 
Bayesian estimators naturally incorporate the source 
covariance matrix S  as prior information, and minimum 2 -

norm estimators may be construed as adopting the norm 
T 1−=j j S j .  Thus, a second order estimation procedure 

that stands on its own avoids circular assumptions, and 
might be used to improve subsequent first order estimation. 
 As noted, the full covariance inverse problem is doubly 
underdetermined.  However, if the source correlation matrix 
is known, the underdeterminacy of the remaining problem of 
estimating source variances from measurement covariances 
is 10log (2 /( ( 1)))n m m + , which,  for 200m ≈  and 10000n ≈ , 
is -0.3 orders of magnitude.  Thus, the covariance-to-
variance problem, assuming known source correlations, can 
be overdetermined.  Although this is not the full problem, it 
suggests that source correlation modeling may provide a 
viable solution strategy.  The spatial correlation structure of 
neuroelectric activity in the brain is exceedingly complex, 
and detailed prior knowledge is deficient; but even a crude 
model, such as the following, may help.  Given two brain 
regions, it is plausible to expect zero-lag correlations 
between them approximately to the extent that their inputs 
come from common brain regions.  If neighboring regions 
tend to share inputs, this principle entails (at minimum) a 
local correlation structure that decays with some distance 
measure, such as cortical surface distance. 
 In [4], Sahani and Nagarajan describe a variational 
Bayesian approach to estimate the source correlation matrix, 
which introduces sparsity via hyperparameter optimization.  
Whereas sparse solutions have low entropy, the present 
paper describes an approach that, by contrast, aims for 
maximum entropy solutions, i.e., those that are maximally 
distributed throughout the brain and minimally constrained.  
The rationale is that a solution represents a spontaneous 
process in the brain, and it is desirable to retain as many 
statistical degrees of freedom as possible, consistent with 
our knowledge of data and models.  Undoubtedly, there will 
be some situations in which sparse solutions are correct, and 
others in which distributed solutions are correct.  If a source 
covariance matrix will be used for subsequent first order 
estimation — as in the case of REGAE — a maximum 
entropy solution may be desirable in either case. 
 

II.  METHODS 
 
A.  Theory 
 The assumed relationship between n  current dipole 
elements in the source domain and m  measurement channels 
derived from 'm m≥  sensors is 

( ) ( )t t=v DFj ,                                (1) 
where ( )tj  is an n-dimensional current density vector at time 
t; F  is an 'm n×  forward matrix; D  is an 'm m×  derivation 
matrix from sensors to channels; and ( )tv  is an m-
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dimensional derived measurement vector at t.  For EEG, D  
includes at minimum the referencing scheme; more 
generally, it may incorporate an arbitrary linear derivation.  
The m n×  gain matrix is defined as ≡G DF . 
 Assuming a zero-mean process, one typical way to 
estimate an m m×  observed covariance matrix C  from a set 
of derived measurements is 

T T

1

1 ( ) ( )
p

t

t t
p =

= ≈ ∑C vv v v ,                      (2) 

where the number of samples p  exceeds the number of 
derived channels several fold (e.g., 4p m≈ ).  Given C , an 
n n×  source covariance matrix S  is desired such that 

T=C GSG .                                   (3) 
In the underdetermined case considered here, this constraint 
does not uniquely determine S .  However, given some prior 
expectations embodied by a matrix Ω , called a source 
covariance model, S  may be uniquely specified as the 
source covariance satisfying (3) that in some sense is 
“closest” to the expected model.   One direct approach to 
formalize this problem is to minimize the Frobenius norm 
[5] between S  and Ω .  Another is to minimize the Kullback-
Leibler divergence [6] between the zero-mean Gaussian 
probability density functions corresponding to S  and Ω . 
 A third approach, taken here, is to maximize the entropy 
of a constrained spontaneity matrix Ψ  constructed so that 

1/ 2 1/ 2=S Ω ΨΩ                                (4) 
satisfies (3).  Consider first the ideal case of a source 
covariance model Ω  that accounts perfectly for the 
observed covariance C  up to a scale factor.  It follows that 

2
nσ=Ψ I , which corresponds to the independent and 

identically distributed n-variate Gaussian distribution with 
standard deviation σ .  This generator of random activity 
(“spontaneity”) has maximum entropy in an unscaled sense, 
i.e., disregarding the scale σ .  In real cases, the source 
covariance model insufficiently explains the data, so that Ψ  
must deviate from the scaled identity to satisfy (3).  
Nevertheless, according to the maximum entropy principle 
used here, the added constraints should be minimized so that 
Ψ  approximates 2

nσ I  as nearly as possible.  Thus, if  
1/ 2

nσ= +Ψ I Ξ ,                             (5) 
then the scale of the constraints matrix Ξ  should be 
minimized relative to σ .  Propositions 1 and 2 provide a 
way to realize this approach. 
 Proposition 1.  Let: C  be a m m×  symmetric positive 
definite matrix (e.g., a covariance matrix); 1/ 2−C  be its 
inverse square root; and B  be m n× , with T 1/ 2 T− =B C UWV  
a singular value decomposition (SVD; [5]) with all non-zero 
singular values. (The SVD form implies that W  is non-
negative diagonal, and that T T T

m= = =U U V V VV I ; though 
in general T

n≠UU I .)  Then for any scalar σ  
1 T 2 T( ( ) )n mσ σ−= + −C B I U W I U B .              (6) 

 Proof.  See Appendix A. 

 In particular, if 1/ 2=B GΩ , then (3) is satisfied via (4) 
and (5) when 

1 T( )mσ−= −Ξ U W I U .                          (7) 
Because the columns of U  are orthonormal, Ξ  incorporates 
m independent constraints, the ith constraint weighted as 

1| |iw σ− − , where 1diag( )mw w = W .  Proposition 2 may be 
used to find σ  that minimizes the contribution of Ξ  relative 
to nσ I , thereby maximizing the unscaled entropy of Ψ . 

 Proposition 2.  Define 
1 2

2
1

1( ) ( )
m

i
i

w
m

φ σ σ
σ

−

=

≡ −∑ ,                       (8) 

where σ  and all { | 1, }iw i m=  are positive.  Then φ  has a 
unique minimum at 

1
2 1

*
1 1

m m

i i
i i

w wσ
−

− −

= =

   =   
  
∑ ∑ ,                         (9) 

and *0 ( ) 1φ σ≤ < . 
 Proof.  See Appendix B. 
 Therefore, the maximum (unscaled) entropy solution is 

1/ 2 T 1/ 2 T

1/ 2 1 T
* * *

1/ 2 1/ 2
* *

svd( )
( )n mσ σ

−

−

=

= + −

=

Ω G C UWV
Ψ I U W I U

S Ω Ψ Ω

.                (10) 

Further, the quantity *( )φ σ  indicates the degree to which the 
source covariance model Ω  can explain the observed 
covariance C .  If Ω  is ideal, so that no added constraints are 
needed to satisfy (3), then *( ) 0φ σ = .  This condition is 
equivalent to 1 2 mw w w w= = = = , for in this case 

1
* wσ −= .  On the other hand, *( ) 1φ σ <  is guaranteed for any 

source covariance model that satisfies the mild condition 
1/ 2 T 1/ 2rank( ) m− =Ω G C .  Consequently, as *( ) 1φ σ → , the 

constraints term Ξ  becomes balanced with the “spontaneity 
term” nσ I ; and this worst case situation indicates that the 
source covariance model is not helping to satisfy (3).  Note 
that the case 0σ = , which relies exclusively on Ξ , produces 
a solution to (3), namely, 2 T−=Ψ UW U , which has 
minimum entropy.  It therefore is never a candidate for the 
maximum entropy solution.  
 
B.  EEG Data 
  The theory was applied to a sample EEG dataset 
provided by Richard Clark and Kathryn Moores of Flinders 
University.  Although the experimental details are of 
intrinsic interest, the aims of this paper are methodological, 
and so the description here is brief.  A healthy, right-handed, 
male subject participated in a visual verbal working memory 
experiment, of which a low memory load condition (“fixed 
target”) is analyzed here.  A whole-head, T1-weighted 
structural MRI was obtained (Siemens VISION, 1.5 Tesla); 
124-channel EEG was recorded continuously during the task 
(Neuroscan ESI-128, 400 Hz); and electrode locations were 
digitized (Polhemus Fastrak).  Further details are in [7]. 
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C.  Analysis 
 EMSE Suite software (Source Signal Imaging, version 
5.1) was used to: (i) segment the structural MRI into 
regions, including scalp, skull, CSF, white matter, and gray 
matter; (ii) produce 2D meshes for cortical, inner skull, 
outer skull, and scalp surfaces; (iii) co-register digitized 
electrode locations to the structural MRI; (iv) calculate 3-
shell spherical and 3-compartment boundary element 
method (BEM) head models; (v) inspect, common average 
reference, bandpass filter (2-pole, zero-phase, Butterworth 
squared), and select the task-related EEG segments; and (vi) 
estimate measurement covariances in four frequency bands: 
8-13 Hz (alpha), 14-20 Hz (beta-1), 21-32 Hz (beta-2), and 
33-55 Hz (gamma).  About 150 event-related epochs (0 s to 
1 s post-stimulus) were concatenated for this purpose (for a 
total of about 60,000 time samples). 
 Spatial SVD was applied to each resulting covariance 
matrix, and a number of principal components was retained 
so as to account for 95% of the total variance (13 
components for alpha, 21 for beta-1, 22 for beta-2, and 27 
for gamma).  The principal vectors were used to construct 
the derivation matrix D  of equation (1).  The forward matrix 
F  was computed in four (2×2) ways: {head model = 
spherical or BEM} × {cortical mesh vertices = 16,027 or 
24,904}.  A dipole element was placed at each mesh vertex 
using a surface-normal orientation ([8]).  The source 
covariance model Ω  was assumed to be the identity matrix. 
 

III.  RESULTS 
 Cortical maps for the diagonal (standard deviations) of 
the estimated maximum entropy source covariance matrix 
square root are shown in Fig. 1 for the BEM using the 
24,904-vertex mesh.  Values are mapped relative to *σ . 

Table 1 summarizes the * *( )φ φ σ≡  measure obtained for 
the four forward matrices: {Spherical head model vs. BEM 
head model} × {16,027 vertices vs. 24,904 vertices}. 
 

Spherical BEM Table 1 
φ* 16,027 24,904 16,027 24,904 

8-13 Hz 0.242 0.255 0.245 0.253 
14-20 Hz 0.191 0.197 0.254 0.258 
21-32 Hz 0.313 0.356 0.398 0.434 
33-55 Hz 0.408 0.424 0.480 0.498 

 
IV. DISCUSSION 

 
A. Interpretation 
 As Fig. 1 illustrates, the maximum unscaled entropy 
method for estimating source standard deviations via 
measurement covariances produces plausible results.  The 
values mapped are deviations from the constant *σ .  Positive 
deviations are those in excess of *σ , and negative deviations 
are those below *σ .  Thus, *σ  is providing a kind of brain-
wide “reference”.  According to the goal of minimizing 
imposed constraints, these deviations are the smallest 
necessary to reconstruct the observed covariances.   
Although the overall solution (with the addition of *σ ) has 
very high spatial uniformity, the deviations themselves 
apparently are structured.  For the alpha band, positive 
deviations are near V1 occipital areas, and in lateral 
occipital areas (mostly on the left); and there are some 
bilateral negative deviations (e.g., superior frontal).  The 
beta-1 band shows enhanced lateral occipital positive 
deviations that coexist with negative V1 deviations, hinting 
that the underlying dynamics differ; also, there are some 
notable right-left asymmetries.  For the beta-2 band, all is 
negative in the occipital regions; and a left-frontal positive 
deviation appears: possibly near Broca’s area (recalling the 
verbal working memory task).  The gamma band shows a 
hint of the same left-frontal region. 
 The results of Table 1 were initially surprising: 
Considering that *φ  is a goodness-of-fit measure for 1/ 2 TΩ F , 
it seems natural to expect that improvement of the forward 
matrix F  via a refined source domain and a more realistic 
volume conductor model should diminish *φ ; but the 
opposite was observed.  An hypothesis to explain this is that 
(a) the source covariance model =Ω I  is too simple—in 
particular, there are local correlations of brain activity—and 
(b) the simplified source domain and volume conductor 
models provided extra smoothing to compensate somewhat 
for this deficiency.  For the less-refined mesh, each dipole 
element represents a larger cortical surface area: a kind of 
local spatial averaging.  Likewise, the spherical head model 
“blurs” the forward solution, thus providing a different form 
of smoothing.  If true, then the following theoretical 
extension should provide a way to address the problem. 

 
α 
 

 
β1 

 
 
β2 

 
 
γ 

Fig. 1.  Cortical maps of the diagonal of the square root  of the estimated 
source covariance matrix for alpha (8-13 Hz), beta-1 (14-20 Hz), beta-2 
(21-32 Hz), and gamma (33-55 Hz) bands.  Gray corresponds to σ*; red 
means “greater than σ*” and blue means “less than σ*”.  The source domain 
was a cortical mesh with 24,904 vertices; the source covariance model was 
the identity; the forward model was computed using a 3-compartment 
BEM; and data were reduced so as to conserve 95% of the variance. 
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B. Extension of Theory 
 Considering that * *( )φ φ σ≡  measures the “goodness of 
fit” of the source covariance model to the data, a 
parameterized model [ ]Ω ω  may be optimized by finding a 
parameter vector ω  that minimizes *φ .  In general, a 
covariance matrix Ω  may be factored as 

=Ω AΓA ,                                 (11) 
where A  is a diagonal amplitude (standard deviation) 
matrix, and Γ  is a correlation matrix ( 1 1ij ji− ≤ Γ = Γ ≤ , and 

1iiΓ = ).  Thus, the model parameters may be classified as 
those which apply to the amplitude matrix ( [ ]A α ) and those 
which apply to the correlation matrix ( [ ]Γ γ ). 
 For example, a simple one-parameter covariance model 
may be implemented that assumes a spatially flat amplitude 
distribution; i.e., n=A I .  In accordance with the “common 
input principle” suggested in the Introduction, local spatial 
correlations in cortex are plausible.  To formalize, if i and j 
are dipole elements within the same hemisphere, then 

exp{ / }ij ijl λΓ = − ,                              (12) 
where ijl is the cortical surface distance between i and j, and 
λ  is a local coupling length parameter.  This primitive 
model neglects many other kinds of correlations, such as 
those between homologous inter-hemispheric cortical areas. 
 In summary, given C  and G , an extended maximum 
entropy algorithm iterates over various values of λ  in search 
of an optimal *λ  such that, using the source covariance 
model *[ ]λ=Ω Γ , *( )φ σ  is minimized.  The results are *S  
(the maximum entropy source covariance estimate), *σ  
(standard deviation of spontaneous activity), *λ  (local 
coupling length), and *φ  (a goodness-of-fit measure). 
 

V.  CONCLUSION 
 
 A novel solution to the second-order inverse problem of 
estimating source variances and covariances from sensor 
covariances has been presented.  In principle, estimation of 
S  may be used to improve first-order inverse solutions.  The 

*φ  measure may help to improve underlying parameterized 
models, in particular, source covariance models.  This work 
remains to be compared with that of [9]. 
  

APPENDIX 
 

A. Proof of Proposition 1 
The plan is to reduce the proposed identity to m m=I I  

using SVD properties T
m=U U I  and T

m=V V I . 
Because C  is nonsingular, (6) is equivalent to 

1/ 2 1 T 2 T 1/ 2( ( ) )m n mσ σ− − −= + −I C B I U W I U B C .    (A1) 
Symbol manipulation produces the following identity: 

1 T 2 2 2 2 T( ( ) ) ( )n m n mσ σ σ σ− −+ − = + −I U W I U I U W I U . 
Substituting T 1/ 2 T− =B C UWV , the r.h.s. of (A1) becomes 

T 2 2 2 T T( ( ) )n mσ σ−+ −VWU I U W I U UWV . 
Left-multiplying by TV  and right-multiplying by V  leaves 
the l.h.s. is intact, and the r.h.s. reduces to 

2 T T 2 2 T 2( ( ) )m mσ σ− −+ − = =W U U U U W I U U W WW W I . 
 

B. Proof of Proposition 2 

 Define 1 2

1

m

i
i

a m w− −

=

≡ ∑  and 1 1

1

m

i
i

b m w− −

=

≡ ∑ .  From (8), 

2 1

2 1

3 1

( ) 2 1
( ) 2 ( )
( ) 2 (3 2 )

a b
a b
a b

φ σ σ σ

φ σ σ σ

φ σ σ σ

− −

− −

− −

= − +

′ = − −

′′ = −

. 

*( ) 0φ σ′ =  implies that 1
* abσ −= , per (9).  1 3 4( ) 2ab a bφ − −′′ = , 

which is positive because both a and b are positive, 
considering that all singular values { }iw  are positive.  
Therefore, *σ  corresponds to a unique minimum.  As 

0σ → , φ →∞ .  As σ →∞ , 1φ →  from below, because   
*( / 2) 1φ σ =  and *( )φ σ  is the global minimum.  Therefore, 
*( ) 1φ σ < .  By construction, φ  is non-negative; and, as 

noted, it can be 0 when all singular values are equal. 
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