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Abstract—The structure of the sources underlying surface 
recordings of brain activity is very complex. We have 
developed an iterative procedure based on independent 
component analysis to obtain single-trial estimates of the 
auditory N100 component recorded in normal subjects 
using a pure tone, binaural stimulation task and a whole-
head, 256-channel recording system. For each channel, 
the processed single trials were separated into two 
groups, one with trials in which the N100 component had 
the same phase as the average response and another one 
with trials having the opposite phase. Our results show 
that the proposed method can effectively extract only the 
activity related to the experimental task, while removing 
artifacts and background activity, and that the sources 
of the N100 component that are typically localized on the 
floor of the Sylvian fissure are primarily due to in-phase 
responses. 
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I. INTRODUCTION 
 

Electric source imaging is a noninvasive functional 
brain mapping modality that combines neurophysiological 
data derived via electroencephalography (EEG) with 
magnetic resonance imaging (MRI) scans to identify brain 
structures and their function [15]. The procedure relies on 
evoked potentials (EPs) resulting from sensory stimulation.  

Neurophysiological recordings, and in particular EPs, 
are often contaminated by noise. This may include 
environmental sources, like 60-Hz electrical interference, 
and biological sources of non-neuronal origin, like the heart 
activity (ECG), eye blinks, respiratory artifacts, and muscle 
activity. All these artifacts and the activity not contributing 
to a particular response result in distorted EP components, 
which, in turn, result in reduced source localization 
accuracy. To minimize the noise effects of extraneous 
activity, most of the published studies have used ensemble 
averaging to improve the signal-to-noise ratio of individual 
components.  

This approach, however, does not provide information 
on the dynamics of the brain processes underlying the 
surface recordings. Single-trial analysis, on the other hand, 
can provide information on the temporal evolution of the 
neurophysiological processes associated with the particular 
EP components under investigation. 

Ideally, one would like to record only the activity of the 
cortical generators activated by the experimental task. 
Recently, blind source separation procedures and, in 
particular, independent component analysis (ICA) has been 
successfully applied to EEG/EP analysis [10, 13]. These 
procedures are based on two main hypotheses [10], namely 
that the EEG data recorded at multiple scalp sensors are 
linear sums of temporal independent components arising 
from spatially fixed brain networks, and that volume 
conduction of electric currents from the various cortical 
sources does not involve significant time delays.  
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We have recently proposed an methodology for single-
trial EP analysis [16]. The technique focuses only on a 
particular EP component at a time that is made visible on 
each single trial. Our method is based on ICA and the idea 
that activity resulting from an experimental stimulus is 
independent from neurophysiological artifacts and 
background brain activity [9, 10, 13]. The advantage of the 
method is twofold: it can extract individual components out 
of the entire EP waveform, and it can also provide clear 
estimates of these components in single trial responses. 
Thus, the method allows studying the dynamic evolution of 
the underlying cortical generators that give rise to a specific 
EP component.  

In this paper, we tested two hypotheses: 1) improved EP 
estimates can provide increased source localization 
accuracy, and 2) the in-phase and out-of-phase partial EPs 
represent different processes and are generated by distinct 
brain structures.  
 

II. METHODS 
 
A. Iterative ICA 
 

Independent component analysis [3] is a method for 
solving the blind source separation problem [7], which tries 
to recover N independent source signals, s = {s1,…,sN}, 
from N observations, x = {x1,…,xN}, that represent linear 
mixtures of the independent source signals. The key 
assumption used to separate sources from mixtures is that 
the sources are statistically independent, while the mixtures 
are not. Mathematically, the problem is described as x = As, 
where A is an unknown mixing matrix, and the task is to 
recover a version, u, of the original sources, similar to s, by 
estimating a matrix, W, which inverts the mixing process, 
i.e., u = Wx. The estimates u are called independent 
components (ICs). The extended infomax algorithm is 
currently the most efficient technique to solve this problem 
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and relies on information theory and a neural network 
approach [1, 4, 7, 8]. 

Our technique, termed iterative ICA (iICA), is an 
iterative implementation of this algorithm and is applied to a 
set of recordings consisting of L single trials obtained from 
N recording channels. Before processing, all single trials are 
bandpass filtered between 15 and 50 Hz. The procedure 
consists in the following steps: 
 

1. Compute an average EP from all single trials. 
2. Compute the ICA transform of all single trials, 

grouped in blocks of 10. 
3. Compute the absolute correlation value between the 

current average EP and the ICs in all blocks, within 
a predefined window Wr. 

4. Set to zero those ICs with correlation less than a 
predefined threshold rth. 

5. Compute the inverse ICA transform of the updated 
ICs back to the time domain, separately in each 
block. 

6. Shuffle the updated single trials around the entire 
set. 

7. Repeat steps 1 to 6 until a convergence criterion is 
met. 

 
The same procedure is then applied to the rest of the 
channels until all of them have been processed. The 
parameter values used in the present study were Wr = 50–
250 ms poststimulus, which was consistent with the 
occurrence of the N100 waveform, and rth = 0.15. Shuffling 
of the trials guarantees that each of the blocks will include 
different trials in the next iteration, and thus the resulting 
ICA system of equations will not be underdetermined. 
 
B. Data 
 

Data from 13 normal subjects (11 right-handed and two 
left-handed adults, 9 males and 4 females, ages between 23 
and 42 years) were recorded with a whole-head, 256-
channel, dense-array EEG (dEEG) scanner, using an 
electrode cap covering the entire head (BioSemi Active Two 
EEG system). The stimuli consisted of 1-kHz tones with 
duration of 40 msec, and 10 msec rise and fall times. Stimuli 
were delivered binaurally at the rate of 1.1 stimuli per 
second. The data were referenced to the linked mastoids.  

 
C. Data Analysis 
 

The iICA method was applied to each channel 
separately. The processed single trials were separated into 
two groups: an “in-phase” one, with trials in which the N100 
component had the same phase as the average response, and 
an “out-of-phase” one, with trials having the opposite phase 
[6]. Then, all trials in a particular group were averaged 
together to produce a partial EP. Finally, source 
localizations were obtained using the original unprocessed 

EPs, the iICA-processed ensemble average EPs, and the two 
partial EPs. In all cases, out of the entire waveform we 
localized only the N100 component. 
 
D. Source Localization 
 

The location of the recording electrodes was digitally 
identified in 3D space using a Polhemus device. Equivalent 
current dipole (ECD) fitting of the EEG data was done in a 
three-sphere head model, using Curry 4.5 software. The 
dipole parameters were determined so that they explained 
the measured data optimally in the least-squares sense. The 
location and size of the spheres were determined 
individually for each subject by fitting a sphere to the 
measured electrode locations. For the three-shell model, the 
diameter of the skull, scalp, and brain was taken to be 10, 9, 
and 7 cm, respectively, while their conductivities were 
postulated to be 0.33, 0.0042 and 0.33 mho/m, respectively 
[2]. In all cases, we used two moving dipoles with mirror 
constraints to fit the N100 component, i.e., two nearly 
bilaterally symmetric locations in the two hemispheres [5, 
10, 11, 13]. The resulting dipoles were overlaid onto each 
subject’s MRI. 

 
 

III. RESULTS 
 

Figure 1 shows an example of the responses obtained 
from a typical subject to illustrate the denoising 
performance of the new iICA procedure. The top panel 
shows superimposed the original EPs obtained from all 256 
channels after lowpass filtering between 0.1 and 20 Hz.  

 

(a) 

(b) 

(c) 

(d) 

Fig. 1. Improved average EP estimates using the iICA procedure. (a) 
Original EPs; (b) iICA processed EPs, and the corresponding (c) in-phase 

and (d) out-of-phase partial EPs. 
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A clear N100 is difficult to discern in these responses 
due to the additional activity around this component. Figure 
1 (b) shows the same responses after iICA processing. In 
this case, the overall component morphology is improved 
with respect to the background activity. In particular, the 
N100-P200 complex is more prominent, while the 
surrounding activity is now drastically reduced.  

Each trace in this graph resulted from averaging all 
iICA-denoised trials corresponding to that channel, while 
Figure 1 (c) and (d) show the corresponding in-phase, and 
out-of-phase partial EPs, respectively. As it can be seen, the 
N100 component in these EPs is also very prominent. In 
addition, it has about the same amplitude, but exactly 
opposite phase. 
 
 

 
Fig. 2. Localizations obtained using the (a) original EPs, the (b) iICA 

processed EPs, and the corresponding (c) in-phase and (d) out-of-phase 
partial EPs. 

 
Figure 2 illustrates the effectiveness of the iterative ICA 

procedure in obtaining improved source localizations. The 
top panels (a) depict the source localizations obtained from 
the original unprocessed data when projected on sagittal, 
coronal, and axial sectional views. The dipolar sources 
indicated by yellow poles are far away from the expected 
actual N100 source location, which is mostly the floor of the 

Sylvian fissure. The sources obtained after iICA processing 
are shown in panels (b), whereby all dipoles clearly fall on 
the expected areas. Multiple dipoles seem to show a 
successive the activation of adjacent cortical areas over 
time.  

The dipoles depicted on panels (c) of Figure 2 are 
computed after fitting the N100 component using only the 
in-phase responses. In nine out of 13 subjects these 
responses provided the best localizations, especially in cases 
where the localizations obtained using all responses were 
not at the expected areas. Panels (d) of the same figure 
depict the sources identified after fitting the N100 
component in the out-of-phase trials. The locations of these 
dipoles varied widely from dataset to dataset and did not 
follow any consistent pattern across the subjects analyzed.  

 
 

(a) IV. DISCUSSION 
 

Results from the 13 subjects analyzed so far show that 
improved EPs can be obtained using the new iICA 
procedure in terms of overall component morphology–after 
processing the N100 component was more prominent and 
better defined with respect to the background activity. 

The sources of the auditory N100 component have been 
consistently identified in the primary auditory cortex by a 
variety of neuroimaging studies using evoked potentials and 
evoked fields [5, 11, 12, 14]. However, oftentimes 
extraneous activity may result in mis-localization of the 
sources. In our case, before processing, only four out of the 
13 dEEG datasets could be localized correctly, whereas, 
after processing, in all 13 datasets the N100 sources fell 
clearly in the area of the primary auditory cortex, i.e., the 
floor of the Sylvian fissure. Further analysis showed that in 
most datasets the improved localizations were mostly due to 
the in-phase partial EPs, whereas the contribution from the 
out-of-phase partial EPs had an antagonistic effect. At 
present, the significance of this component is unknown. 

(b) 

(c) 

(d) 
 In addition to accurate localizations, the iteratively 

processed data revealed another interesting aspect. It seemed 
to confirm previous evidence for a dynamic process 
involving successive excitation of adjacent cortical sources 
that are arranged along the anteroposterior axis in the 
auditory cortices and following the course of the 
supratemporal plane [14]. 

The above results support our hypotheses that improved 
response estimates result in improved source localizations, 
and suggest that the method can be used in clinical 
applications.  
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