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Abstract. Respiration derivation from ECG signals would be an alternative approach for obtaining respiration related
knowledge that is especially useful in the situation in which the respiration is not routinely monitored by specialized
equipment. Although several published methods could give reasonable results for this purpose, for some applications,
they still have drawbacks in some respects, e.g., requiring multi-channel ECG signal, being robust-less against noise,
etc.. In order to overcome these drawbacks, in this paper, we investigate the possibility of obtaining respiratory
knowledge from a single-channel ECG signal based on its higher order statistics, which is a notable feature that the
conventional methods do not hold. Another worthy of mention feature is that the method depends on R-wave
detections only, such that other feature detections, e.g., Q-wave or S-wave detection, are not necessary anymore for
the processing. This feature does not make the processing simpler only, with the feature related to higher order
statistics together, but it also strengthens the robustness against noise. Our experiments show the improved
performances with the method.
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1. Introduction

The ECG-derived respiration is the respiratory signal, or say, the respiratory knowledge that is derived
from ECG signals. This is especially important in the case that the ECG, but not the respiration, is
routinely monitored. One can perform respiratory signal extractions by some signal processing approaches.
There have been several efforts for such a purpose [Moody, Mark and Zoccola, 1985, Moody, Mark and
Bump, 1986, Lipsitz, Hashimoto, Lubowsky, Mietus, Moody, Appenzeller, Goldberger, 1995, Nazeran,
Behbehani, Yen and Ray, 1998, and Behbehani, Vijendra, Burk, Lucas, 2002]. These methods are based on
the facts that 1) the positions of ECG electrodes on the chest surface move relative to the heart, and 2)
transthoracic impedance varies, as the lungs fill and empty, during the recording of the ECG. An existent
method is used to take advantage of the fact 1) or both of the fact 1) and the fact 2). For performing such a
method, multi-channel ECG signal are usually required. If the method invokes only the fact 1), the ECG
signal of precordial leads is required either. Some methods that are based on filtering or wavelet have been
proposed [Yi, Park, 2002]. However, such a method has not been shown theoretically underlain, since as
shown in the next section, the respiration acts as a modulation on, rather than an additive signal to, the
ECG source.

In some situations, one might have only a single-channel ECG signal. Furthermore, this signal might not
be from one of the precordial leads. This is the case especially for some ECG monitors for non-
professional use. In such a situation the conventional approaches do not work. In this paper, we resolve this
problem and propose an approach for respiratory extraction from a single-channel that is not necessarily
from a precordial lead.

One of the most notable features of our proposed approach is that it invokes the higher order statistics of
ECG recording such as the 4-th order cumulant. Just because of this, we can perform a respiration
extraction from a single and non-precordial lead. In contrast to this, the conventional approach usually
employs the geometric quantities of some ECG characteristic waves, e.g., QRS complex. Besides of



requiring signals of precordial multi-leads, another drawback of such a method is that, besides of the
R-wave detections, it needs Q-wave and S-wave detections as well. Since these waves are usually low
valued, or say, have low signal-to-noise ratios (SNRs), comparing to that of the R-wave, the method trends
less robust against noise.

Considering employing the higher order statistics, it might be worthy for us to compare this approach with
so the called independent component analysis (ICA) [Cichocki and Amari]. This technique is for the
purpose of blind source separation (BSS) that sounds similar to that of this paper. Indeed, there existed
several research works for applications of ICA on ECG sources [Cardoso, 1998]. ICA is also usually
performed based on higher order statistics. Although ICA can also be used for the source extraction, it is
not a good tool for the present purpose. The reason is, as discussed in Section 2, the ECG source is
modulated by the respiration, instead of being superposed by a respiration source, as in a case that the ICA
applicable.

The approach proposed in this paper is as follows. First, we remove the baseline wandering. Second, we
detect the R-waves. Third, we calculate the kurtosis between each two neighboring R peaks, from which
we derive a respiratory strength at the RR periodic. After this, we spline the samples and filter the signal to
obtain the smoothed respiratory signal.

In Section 2 we give the problem description and the proposed method. We also discuss the theoretical
properties of the proposed method. In Section 3, we evaluate the performance with some numerical results
via a public ECG bench marker with monitored respirations. In Section 4, we give discussions and draw
conclusions.

2. The Method

2.1 The Problem Description

The basic problem is briefly described. It is assumed that an ECG source that is usually generated inside
the heart of human. This source is unknown and transferred in a linear medium leading to an ECG sensor
signal u(t) instant t that may include an underlying signal v(t) , i.e., a baseline drift, and an additive sensor
noise n(t),

u(®)=A(®s(O+v(t)+n() (1)

where A(t) denotes the transfer characteristic of the linear medium from the ECG source to the sensor.
Usually, it is either positive definite or negative definite. In this paper, without losing generality, we
assume that it is positive definite. The transfer characteristic acts as a modulation on the ECG source.
Usually, the additive sensor noise is approximately Gaussian distributed. Medically, several leads of ECG
signals are recorded in different places. u(t) can be considered as one of the leads. Since, in most
situations, the linear medium is the human body, this transfer characteristic should be mainly related to a
variation of the body conditions. One of the important variations of the body conditions is an impedance
variation of body, or say, the thorax, due to the respiration. The underlying signal, i.e., baseline drift v(t) is
generated due to the variation of interaction between the sensor and the body. One of the variations of
interaction is the electrical resistance variation between the sensor and the skin. Of course there may be
other kinds of variation factors. However, the most important two factors should be the respiratory
modulation and the baseline drift. Therefore, we obtain

AW=I(1) (2)

if the other modulation factors are so small that can be neglected. Here, I(t) denotes the transfer
characteristic part of the thorax impedance.

The problem concerned about in this paper is how to derive a respiratory signal, which is related to I(t),
from the ECG signal u(t). This is possible because that the variation of I(t) is much slower than that of s(t) .
Before we can do this, removing the baseline drift is required, since it is not of our interest and might
affect the quality of the derived respiration.



2.2 The Method and Its Theoretical Principle

In this paper, we propose a method for deriving respiration, which invokes the higher order statistics of a
single-channel ECG signal. The steps and the block diagram for the signal processing are shown in Fig.1
and Fig. 2, respectively.

As the first step, we perform the removal of baseline drift in the recorded ECG signal. This can be done
based on some differences between the baseline drift and the ECG source. These differences include, 1) the
baseline drift and the ECG source are independently generated, 2) the baseline drift is random but an ECG
usually has some special patterns, 3) in most situations, the frequency of baseline wander is much lower
than the appearing frequency of QRS complex [Raifel and Ron, 1997]. In this paper, we employ the down-
sampling and up-sampling method [Ifeachor and Jervis, 1993]. After this processing, we obtain the
baseline wander removed ECG signal

x(®)=1()s®)+n(t) ©)
The second step performs R-wave detections. We employ the first derivative method [Pan and Tompkins].

We assume there are totally R-waves in the period we are considering, and we have detected R-waves that
are at samples with numbers ty for k=1,2,...N. Here k denotes the number of each R-wave. The detected

value of R-peak at k-th R-wave is x(ty).
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Figure 1. Steps for signal processing of the respiratory extraction.
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Figure 2. Block diagram for signal processing of the respiratory extraction.



The third step performs the 4-th order cumulant, i.e., the kurtosis, computations in each interval of two
neighboring R-waves, as shown in Fig. 1.

- mb ) s, (o fse S 4)

where Fhsc. denotes the expectation operation on the samples from number tx to number ty4+1-1.
Substituting Eg. 3 into Eq. 4, we obtain
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In deriving this equation, the noise is assumed to have zero mean and zero skewness, ie B ) e, i

and to be uncorrelated with the ECG source . The latter is based on the assumption of the statistical
independency between the ECG source s(t) and the noise n(t). We have also used the property that the
kurtosis of Gaussian noise equals to zero.

Since the ECG source s(t) is unknown for us, its value for B ) s and value for B ) s are also
unknown. However, in usual cases, a reasonable assumption is that they are two positive definite constants
that need to be determined. This is the case when the condition of the patient does not change rapidly. l.e.,

E{’(:' }V.Sr{rn. =y (6)

and
EI[F[I:F }.£r<r.._. =o' 2 (7)

where y and o are constant. In facts, 62 is the variance and y# is the 4-th variance for s(t) in the interval of
the sample number from ty to ty4+1-1.

Substituting Egs. 6 and 7 into Eqg. 5, we obtain

B B L s, + 2t B e, 3o B L S (8)
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where E{’{’:' }nfm- =Fn js the variance of the noise.

Since, usually, 1(t) is much more slowly variant comparing to the RR interval, which is the interval for the
expectation calculation, we may suppose it to be constant approximately in each RR interval, i.e.,

ks, * ) Therefore,
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From Eq. 9, if the kurtosis value between each RR interval is known, we may obtain the respiratory sample
at the k-th R-wave as

J‘I: |:t="1t="1 +|:y‘1 3(5'4 :IR'I:R: ] (10)

y — 3

This equation shows the theoretical principle of respiration derivation based on the higher order statistics
of the ECG signal. In other words, given the kurtosis value of the recorded ECG signal between two
neighboring R-waves, we can estimate a respiratory source sample for the RR-interval. Though this sample
can be assigned to any one ECG signal sample between two neighboring R peaks, in this paper, it is
assigned to the former R peak. In such a way, we can obtain each respiratory source sample at R peak, and
a time series of these samples forms the estimated respiratory waveform.



Once having obtained & based on Eqg. 10, if it is necessary, we can estimate the I(t) in other sample
timings between each RR interval by applying the spline interpolation technique. After the spline
interpolation, we also need a low pass filtering to obtain a smoother respiratory signal. Note that we can
only estimate the respiration up to some constants. Although the constants are unknown, we can still obtain
the respiratory information related with the waveform.

2.3 The Theoretical Features of the Proposed Method

There are three important properties for the proposed method. First, although there exist several
characteristic waveforms in ECG, e.g., P-, Q-, R-, S-, and T-waves, the proposed method is related to the
R-waves only. This property benefits the method with a high accurate respiratory signal and a strengthened
robustness against noise. This is due to that usually an R-wave is much higher valued and has a higher
SNR, comparing with that of other waves, which are weaker with poorer SNRs. Therefore, it is less
erroneous to estimate R-waves. Second, the method is of statistics dependent. Therefore, it is not sensitive
to variety in the ECG structures. Third, the respiration is related to both the lower-order statistics and the
4th-order statistics of the signal. It can be proved that the method depends on the whole-order statistics as
well, if it depends on the 4th-order statistics. In other words, this method will invoke full statistics of the
signal. It can also be proved that, if the additive noise is Gaussian distributed, it will not affect our
estimation results, since its kurtosis equals to zero.

3. Results

A sample plot of ECG signal, measured respiration and derived respiration is shown in Fig. 3. The upper
panel plots the original ECG | signal. The middle panel plots the recorded respiration via the impedance
measure. The lower panel plots the derived respiration with the proposed method. As can be seen from this
plot, the derived result is generated as a continuous waveform reflecting the respiration.
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Figure 3. The ECG I signal (top), the respiration impedance (middle) and the derived respiration

Tab. 1 shows evaluation results with the MGH/MF waveform database in PhysioNet [Goldberger et al.,
2000]. We chose ten data, and each data contains both the ECG 1 signal and the respiration impedance
signal. We derived the respiration with the proposed approach. The respiration impedance was taken as a



reference signal for evaluation. For a quantitative evaluation, we compare the respiratory counts in the
respiration impedance with that in the derived respiration, in the same time interval. We give the relative
accuracy rate, with the respiratory count by the respiration impedance as the reference. From the table,
there was no significant difference between the two counts. Note that we chose some specified intervals
where the impedance respiration for the reference had clearer waveform for easier comparing with the
derived respiration. By experiments, in most other intervals or with most other data, we could also obtain
very similar waveforms for derived respirations to that in the specified intervals shown in Fig. 3.

Table 1. Evaluation results with the MGH/MF waveform database in PhysioNet [Goldberger et al., 2000].

Respiration | Respiration

number number Accurac
ECG Data ID Signal Interval |based on the |based on the y

A rate (%)

respiration | proposed

impedance | method
Mgh005 100001~200000|52 51 98.00
Mgh007 1~100000 58 60 96.55
Mgh012 100001~200000|47 47 100
Mgh019 30001~130000 |43 44 97.67
Mgh024 30001~130000 |64 64 100
Mgh026 100001~200000|70 66 94.29
Mgh029 30001~130000 |46 49 93.48
Mgh030 100001~180000 | 66 68 96.97
Mgh037 30001~130000 |64 61 95.31
Mgh039 30001~130000 |71 67 94.37
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Figure 4. The accuracy rate versus the noise level

Fig. 4 plots the results of the respiration count accuracy rate versus the noise level. This is for evaluate the
robustness of the proposed method against the noise, in contrast to a conventional approach - QRS
complex area method [Moody, Mark, Zoccola and Mantero, 1985]. The noise is additive Gaussian. The
results agree with the theoretical expectation that the propose approach has a higher robustness. The figure
shows a much greater robustness of the proposed method than that of the conventional method, even
though the proposed method use only a single-channel of ECG, while the conventional method uses two-
channel of ECGs.

Note that when the noise level equals to the ECG signal level, the conventional method cannot work at all
since the accuracy rate is zero. However, even in such a situation, the proposed method can still work to
some extent. There are two reasons for this phenomenon. First, the proposed algorithm needs only R-wave
detections, where the SNRs are high enough even though the overall signal average energy equal to the
noise average energy, while the conventional method needs the detections of Q-and S-wave as well, where
the SNRs are poorer. Second, in the proposed algorithm, the kurtosis is used for deriving the respiration,
which is hardly affected by the additive Gaussian noise, while the QRS complex area is used in the
conventional method, which is greatly affected by the additive Gaussian noise.

4. Conclusions

In this paper, we proposed a method for the respiration extraction from a single-channel ECG signal. The
method invoked the higher order statistics of the signals, in contrast to the conventional methods that used
only geometric characteristics of feature waves and the lower-order statistics. We also gave the theoretical
derivation that showed the principle possibility.

With the MGH/MF waveform database in PhysioNet database, our evaluations showed better respiration
accuracy rates, and a more powerful robustness against the additive Gaussian noise than that of the
conventional method. One of the reasons was that the proposed method needed only R-wave detections
where SNRs were higher comparing with other waves. Another reason was that the respiration was derived
based on the kurtosis of the signal, which was hardly affected by the additive Gaussian noise.

Since the proposed method is effective even for a single-channel ECG, it is expected applications in some
specialized ECG monitors.
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