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Abstract. The concept of brain connectivity plays a central role in the neuroscience and different methodologies for
the estimation of such connectivity have been adopted in literature. This paper presents advanced methods for the
estimation of cortical connectivity by applying Structural Equation Modeling (SEM) and Directed Transfer Function
(DTF) on the cortical signals estimated from high resolution EEG recordings. Before the application of SEM and
DTF methodology to the cortical waveforms estimated from high resolution EEG data in human, we performed a
simulation study, in which different main factors (signal to noise ratio, SNR, and simulated cortical activity duration,
LENGTH)  were  systematically  manipulated  in  the  generation  of  test  signals,  and  the  errors  in  the  estimated
connectivity were evaluated by the  Analysis of Variance (ANOVA).  The statistical analysis returned that  during
simulations, both SEM and DTF estimators were able to correctly estimate the imposed connectivity patterns under
reasonable operative conditions, i.e. when data exhibit a SNR of at least 3 and a LENGTH of at least 75 seconds of
non-consecutive EEG recordings at 64 Hz of sampling rate. Determination of the priors in the resolution of the linear
inverse problem was performed with the use of information from the hemodynamic responses of the cortical areas as
revealed  by  block-designed fMRI.  These  methods  were  evaluated  in human  experimental  EEG and  fMRI data
recorded in separate sessions.
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1. Introduction

Human  neocortical  processes  involve  temporal  and  spatial  scales  spanning  several  orders  of
magnitude, from the rapidly shifting somatosensory processes characterized by a temporal scale
of milliseconds and a spatial scale of few square millimeters to the memory processes, involving
time periods  of  seconds  and spatial  scale of  square  centimeters.  Information about  the brain
activity  can  be  obtained  by  measuring  different  physical  variables  arising  from  the  brain
processes, such as the increase in consumption of oxygen by the neural tissues or a variation of
the electric potential over the scalp surface. All these variables are connected in direct or indirect
way  to  the  neural  ongoing  processes,  and  each  variable  has  its  own  spatial  and  temporal
resolution.  The  different  neuroimaging  techniques  are  then  confined  to  the  spatio-temporal
resolution offered by the monitored variables. For instance, it is known from physiology that the
temporal resolution of the hemodynamic deoxyhemoglobin increase/decrease lies in the range of
1-2  seconds,  while  its  spatial  resolution  is  generally  observable  with  the  current  imaging
techniques at few mm scale. Today, there is not a single neuroimaging method which allows a
spatial resolution on a mm scale and a temporal resolution on a msec scale. Hence, it is of interest
to study the possibility to integrate the information offered by the different physiological variables
in  a  unique  mathematical  context.  This  operation  is  called  the  "multimodal  integration"  of



variable  X  and  Y,  when  the  X  variable  has  typically  particular  appealing  spatial  resolution
property (mm scale) and the Y variable has particular attractive temporal properties (on a ms
scale). Nevertheless, the issue of several temporal and spatial domains is critical in the study of
the brain functions, since different properties could become observable, depending on the spatio-
temporal scales at which the brain processes are measured.

Electroencephalography  (EEG)  and  magnetoencephalography  (MEG)  are  two  interesting
techniques that present a high temporal resolution, on the millisecond scale, adequate to follow
brain activity. Unlikely, both techniques have a relatively modest spatial resolution, beyond the
centimeter.  Being fundamentally limited by the inter-sensor distances and by the fundamental
laws of electromagnetism [Nunez, 1981]. On the other hand, the use of a priori information from
other  neuroimaging  techniques like functional  magnetic resonance imaging  (fMRI)  with high
spatial resolution could improve the localization of sources from EEG/MEG data.

The rationale of the multimodal approach based on fMRI, MEG and EEG data to locate brain
activity is that neural activity generating EEG potentials or MEG fields increases glucose and
oxygen demands [Magistretti et al., 1999]. This results in an increase in the local hemodynamic
response that can be measured by fMRI [Grinvald et al., 1986, Puce et al., 1997]. On the whole,
such a correlation between electrical and hemodynamic concomitants provides the basis for a
spatial correspondence between fMRI responses and EEG/MEG source activity.

However,  static  images  of  brain  regions  activated  during  particular  tasks  do  not  convey  the
information of how these regions communicate to each other. The concept of brain connectivity is
viewed as central for the understanding of the organized behavior of cortical regions beyond the
simple mapping of their activity [Lee et al., 2003, Horwitz, 2003]. This organization is thought to
be based on the interaction between different and differently specialized cortical sites. Cortical
connectivity estimation aims at describing these interactions as connectivity patterns which hold
the direction and strength of the information flow between cortical areas. To achieve this, several
methods  have  been  already  applied  on  data  gathered  from  both  hemodynamic  and
electromagnetic techniques [Buchel and Friston, 1997, Gevins et al., 1989, Urbano et al., 1998,
Brovelli et al., 2002, Taniguchi et al.,  2000]. Two main definitions of brain connectivity have
been proposed along these years:  functional and effective connectivity  [Friston, 1994].  While
functional  connectivity  is  defined  as  temporal  correlation  between  spatially  remote
neurophysiologic events, the effective connectivity is defined as the simplest brain circuit which
would produce the same temporal relationship as observed experimentally between cortical sites.
As for the functional connectivity, the several computational methods proposed to estimate how
different brain areas are working together typically involve the estimation of some covariance
properties between the different time series measured from the different spatial sites during motor
and cognitive tasks studied by EEG and fMRI techniques [Gerloff et al.,  1998, Gevins et al.,
1989, Jancke et al., 2000, Urbano et al., 1998]. Differently, Structural Equation Modeling (SEM)
is a technique that has been used for a decade to assess effective connectivity between cortical
areas in humans by using hemodynamic and metabolic measurements [Bollen, 1989, Schlosser et
al., 2003, Buchel and Friston, 1997, McIntosh and Gonzalez-Lima, 1994]. The basic idea of SEM
differs  from  the  usual  statistical  approach  of  modeling  individual  observations,  since  SEM
considers the covariance structure of the data [Bollen, 1989]. However, the estimation of cortical
effective connectivity obtained with the application of the SEM technique on fMRI data has a low
temporal resolution (on the order of ten seconds) which is far from the time scale at which the
brain operates normally. Hence, it  is  of interest to understand if  the SEM technique could be
applied  to  cortical  activity  estimated  by  applying  the  linear  inverse  techniques  to  the  high
resolution EEG data [Gevins et al., 1989, Nunez, 1995, Babiloni et al., 2000, Babiloni et al., 2003,
He et al., 2001, 2002a, 2002b, 2002c, He & Lian, 2002, Hori et al., 2004]. In this way, it would be
possible to study time-varying patterns of brain connectivity, linked to the different parts of the
experimental task studied.

So far, the estimation of functional connectivity on EEG signals has been addressed by applying



either  linear  and  non-linear  methods  which can both  disclose  the direct  flow of  information
between scalp electrodes in the time domain, although with different computational demanding
[Nunez, 1995, Clifford Carter, 1987, Gevins et al., 1989, Urbano et al., 1998, Inouye et al., 1995,
Stam, 2002, Stam et al., 2003, Tononi et al., 1994, Quian Quiroga et al., 2002]. In addition, due to
the evidence that important information in the EEG signals are often coded in the frequency rather
than time domain (reviewed in  [Pfurtscheller and Lopes  da Silva,  1999]),  attention has  been
focused on detecting frequency-specific interactions in EEG or MEG signals by analyzing the
coherence between the activity of pairs of structures [Bressler, 1995, Gross et al., 2001, Gross et
al., 2003]. However, coherence analysis just examines whether a link exists between two neural
structures, by describing instances when they are in synchronous activity, and it does not provide
directly the direction of the information flow. In this respect, a multivariate spectral technique
called  Directed  Transfer  Function  (DTF)  was  proposed  [Kaminski  and  Blinowska,  1991]  to
determine the directional influences between any given pair of channels in a multivariate data set.
This estimator is able to characterize at the same time direction and spectral properties of the
brain signals, requiring only one multivariate autoregressive (MVAR) model to be estimated from
all the EEG channel recordings. The DTF technique has been recently demonstrated [Kaminski et
al., 2001] to rely on the key concept of Granger causality between time series [Granger C.W.J.,
1969],  according  to  which  an  observed  time  series  x(n)  causes  another  series  y(n)  if  the
knowledge of x(n)'s  past significantly improves prediction of  y(n); this relation between time
series is not reciprocal, i.e. x(n) may cause y(n) without y(n) necessarily causing x(n). This lack
of reciprocity allows the evaluation of the direction of information flow between structures

In  this  paper  we  review  the  cortical  connectivity  patterns  by  exploiting  the  SEM  and  DTF
techniques applied on high resolution EEG signals which exhibit a higher spatial resolution than
conventional  cerebral  electromagnetic  measures.  Recently,  such  techniques  were  successfully
applied on high resolution EEG measurements [Babiloni et al., 2005a] and their properties were
also investigated through simulation studies [Astolfi et al., 2005a,b,c]. Indeed, this kind of EEG
techniques includes the use of a large number of scalp electrodes, realistic geometry models of the
head  derived  from  structural  magnetic  resonance  images  (MRIs),  and  advanced  processing
methodologies related to the solution of the linear inverse problem. These methodologies allow
the estimation of cortical current density from sensor measurements [Grave de Peralta Menendez,
1999,  Pascual-Marqui,  1995,  Babiloni  et  al.,  2000,  He  et  al.,  2002°,  Hori  et  al.,  2004].  To
summarize the studies already performed, we first  review the behavior of the SEM and DTF
methods  in  a  simulation  context,  under  different  conditions  that  affects  the EEG recordings,
mainly the signal to noise ratio (factor SNR) and the length of the recordings (factor LENGTH)
[Astolfi et  al.,  2005a,b].  In  particular,  the following questions were addressed: a) what is  the
influence of a variable SNR level imposed on the high resolution EEG data on the accuracy of the
pattern  connectivity  estimation  obtained  by  SEM  and  DTF?  b)  what  is  the  amount  of  high
resolution EEG data necessary to get a usable accuracy of the estimation of connectivity between
cortical areas?

Subsequently, both SEM and DTF methods were applied to the cortical estimates obtained from
high resolution EEG data related to a  simple finger tapping experiment in  a group of human
subjects,  in order to evaluate the capability of the proposed methodology to  draw patterns of
cortical connectivity between brain areas during a simple motor task.

Finally,  we also present  both the mathematical principle and the practical  applications  of  the
multimodal  integration  of  high  resolution  EEG  and  fMRI  for  the  localization  of  sources
responsible for intentional movements.

2. Material and Methods

2.1. Monitoring the cerebral hemodynamic response by fMRI

A brain imaging method, known as functional magnetic resonance imaging (fMRI), has gained



favor  among  neuroscientists  over  the  last  several  years.  Functional  MRI  reflects  oxygen
consumption and, as oxygen consumption is tied to processing or neural activation, can give a
map of functional activity. When neurons fire, they consume oxygen and this causes the local
oxygen levels to briefly decrease and then actually increase above the resting level as nearby
capillaries  dilate  to  let  more  oxygenated  blood  flow  into  the  active  area.  The  most  used
acquisition paradigm is the so-called Blood Oxygen Level Dependence (BOLD), in which the
fMRI scanner works by imaging blood oxygenation. The BOLD paradigm relies on the brain
mechanisms, which overcompensate for oxygen usage (activation causes an influx of oxygenated
blood in  excess of  that used and therefore  the local oxyhemoglobin concentration increases).
Oxygen is carried to the brain in the hemoglobin molecules of blood red cells. Figure 1 shows the
physiologic principle at the base of the generation of fMRI signals. In this figure it is shown how
the hemodynamic responses elicited by an increased neuronal activity (A) produces a decrease of
the deoxyhemoglobin content of the blood flow in the same neuronal district after few seconds
(B).The magnetic properties of hemoglobin differ when it is saturated with oxygen compared to
when  it  has  given  up  oxygen.  Technically,  deoxygenated  hemoglobin  is  "paramagnetic"  and
therefore has a short T2 relaxation time. As the ratio of oxygenated to deoxygenated hemoglobin
increases,  so  does  the  signal  recorded  by  the  MRI.  Deoxyhemoglobin  increases  the  rate  of
depolarization of hydrogen nuclei creating the MR signal thus decreases the intensity of the T2
image.  The  bottom line  is  that  the  intensity  of  images  increases  with  the  increase  of  brain
activation. The problem is that at the standard intensity used for the static magnetic field (1.5
Tesla) this increase is small (usually less than 2%) and easily obscured by noise and different
artifacts. By increasing the static field of the fMRI scanner, the signal to noise ratio increases to
more convenient values. Static field values of 3 Tesla are now commonly used for research on
humans, while recently fMRI scanner at 7 Tesla was employed to map hemodynamic responses in
the human brain [Bonmassar et al., 2001]. At such high field value, the possibility to detect the
initial increase of deoxyhemoglobin (the initial "dip") increase. The interest in the detection of the
dip is based on the fact that this hemodynamic response happens on timescale of 500 ms (as
revealed by  hemodynamic  optic measures;  [Malonek and Grinvald,  1996]),  compared  to  1-2
seconds needed for the response of the vascular system to the oxygen demand. Furthermore, in
the latter case the response has a temporal extension well beyond the activation occurred (10
seconds).  As a last  point,  the spatial distribution of  the initial dip (as described by using the
optical dyes; [Malonek and Grinvald, 1996]) is sharper than those related to the vascular response
of the oxygenated hemoglobin. Recently, with high field strength MR scanners at 7 or even 9.4
Tesla a resolution down to cortical column level has been achieved [Kim et al., 2000]. However,
at the standard field intensity commonly used in fMRI studies (1.5 or 3 Tesla), the identification
of such initial transient increase of deoxyhemoglobin is controversial.



Figure 1. The figure shows the physiologic principle at the base of the generation of fMRI signals. A) Neurons increase their firing
rates, increasing also the oxygen consumption. B) Hemodynamic response in a second scale increases the diameter of the vessel
close to the activated neurons. The induced increase in blood flow overcomes the need for oxygen supply. As a consequence, the
percentage of deoxyhemoglobin in the blood flow decreases in the vessel with respect to the figure A).

2.2. Estimating the causal dependence between EEG signals with Structural Equation Modeling and
Directed Transfer Function

Recently, we proposed the use of the Structural Equation Modeling (SEM) and Directed Transfer
Function  (DTF)  for  the  analysis  of  the  estimated cortical  signals,  by  testing  their  properties
through a simulation study before and then by applying such connectivity tools to real EEG data
[Astolfi et al., 2005a,b,c; Babiloni et al., 2005a].  Here,  we review the two methods to assess
causal relationships between EEG recorded signals. In the SEM the parameters are estimated by
minimizing the difference between the observed covariances and those implied by a structural or
path model. In terms of neural systems, a measure of covariance represents the degree to which
the activities of two or more regions are related.

The  SEM consists  of  a  set  of  linear  structural  equations  containing  observed  variables  and
parameters defining causal relationships among the variables. Variables in the equation system
can  be  endogenous  (i.e.  dependent  from  the  other  variables  in  the  model)  or  exogenous
(independent  from  the  model  itself).  The  structural  equation  model  specifies  the  causal
relationship among the variables, describes the causal effects and assigns the explained and the
unexplained  variance  [Bollen,  1989].  The  public  available  software  LISREL  [Jöreskog  and
Sörbom, 2002] was used for the implementation of the SEM technique.

The DTF technique was applied to the set of cortical estimated waveforms obtained for the N
ROIs considered, as will be described in details in the paragraph of the linear inverse estimation.
The equations employed can be found in [Kaminski and Blinowska, 1991].

2.3. Computer Simulation



The Simulation Study

The experimental  design we  adopted  was  meant  to  analyze  the  recovery  of  the  connectivity
pattern under different levels of SNR and signal temporal length, as they have been imposed
during the generation of sets of test signals, simulating cortical average activations. The simulated
signals were obtained, as described below, starting from actual cortical data, estimated with the
high resolution EEG procedures already available at the High Resolution EEG Laboratory of the
University of Rome "La Sapienza".

Signal Generation for the SEM methodology

Different sets of test signals have been generated in order to fit an imposed connectivity pattern
(shown in Fig. 2) and to respect imposed levels of temporal duration (LENGTH) and Signal to
Noise Ratio (SNR). In the following, in order to use a more compact notation, signals have been
represented  with  the  z  vector  containing  both  the  endogenous  and  the  exogenous  variables.
Channel  z1  is  a  reference  source  waveform,  estimated  from  a  high  resolution  EEG  (128
electrodes) recording in a healthy subject, during the execution of unaimed self-paced movements
of the right finger. Signals z2, z3 and z4 were obtained by contribution of signals from all other
channels, with an amplitude variation, plus zero mean uncorrelated white noise processes with
appropriate variances.

Figure 2. Connectivity pattern imposed in the generation of simulated signals. z1, …, z4 represent the average activities in four
cortical areas. Values on the arcs represent the connections strength (a21=1.4, a31=1.1, a32=0.5, a42=0.7, a43=1.2).

All procedures of signal generation were repeated under the following conditions:

SNR factor levels = [1, 3, 5, 10, 100]
LENGTH factor levels = [60, 190, 310, 610] seconds. This corresponds, for instance, to [120,

380, 620, 1220] EEG epochs, each of which is 500 ms long.

It is worth noticing that the levels chosen for both SNR and LENGTH factors cover the typical
range for the cortical activity estimated with high resolution EEG techniques.

Signal generation for the DTF methodolog

Different sets of test signals have been generated in order to fit an imposed coupling scheme,
involving four different cortical areas (shown in Fig.2), as well as to respect imposed levels of



Signal to Noise Ratio (factor SNR) and duration (factor LENGTH). Signal z1(t) was a reference
cortical waveform estimated from a high resolution EEG recording in a healthy subject, during
the execution of self-paced movements of the left finger. Subsequent signals z2(t) - z4(t)  were
iteratively obtained according to the imposed scheme (Fig.2), by adding to signal zj contributions
from the other signals, delayed by intervals tij and amplified by factors aij, plus an uncorrelated
Gaussian white noise. Coefficients of the connection strengths were chosen in a range of realistic
values  as  met  in  previous  studies,  during  the  application  of  other  connectivity  estimation
techniques, like the Structural Equation Modeling, in several memory, motor and sensory tasks
[Buchel  and Friston, 1997].  Here,  the  values  used for the connection strength were a21=1.4,
a31=1.1, a32=0.5, a42=0.7, a43=1.2. The values used for the delay from the i-th ROI to the j-th one
(tij) ranged from 1 sample up to the q-2, where q was the order of the MVAR model used. Since
the statistical analysis performed with different values of such delay samples returned the same
information with respect the variation of this parameter, in the following we particularized the
results to the case τ21= τ31= τ32 = τ42 = τ43 = 1 sample, that for a sampling rate of 64 Hz became
a  delay  of  15  ms.  All  procedures  of  signal  generation  were  repeated  under  the  following
conditions:

SNR factor levels = (0.1, 1, 3, 5, 10);
LENGTH  factor  levels  =  (960,  2880,  4800,  9600,  19200,  38400)  data  samples,

corresponding to a signals length of (15, 45, 75, 150, 300, 600) seconds, at a sampling rate of 64
Hz, or to (7, 22, 37, 75, 150, 300) EEG trials of 2 seconds each. The levels chosen for both SNR
and  LENGTH  factors  cover  the  typical  range  for  the  cortical  activity  estimated  with  high
resolution EEG techniques.

Performance Evaluation

In order to evaluate the quality of the performed estimation, the Frobenius norm of the matrix
reporting  the  differences  between  the  values  of  the  estimated  (via  SEM)  and  the  imposed
connections (Relative Error) was computed for the connectivity patterns obtained with the SEM
methodology

(1)

In the case in which the DTF method was used, the statistical evaluation of DTF performances
required  a  precise  definition  of  an  error  function,  describing  the  goodness  of  the  pattern
recognition  performed.  This  was  achieved  by  focusing  on  MVAR model  structure  since  the
MVAR  model  coefficients  can  be  put  in  relation  with  the  coefficients  used  in  the  signal
generation, and they are different from zero only for k= τij, where tij is the delay chosen for each
pair ij of ROIs and for each direction among them. Thus, with the estimation of the MVAR model
parameters, we aim to recover the original coefficients aij(k), used in signal generation. In this
way,  reference  DTF  functions  have  been  computed,  on  the  basis  of  the  signal  generation
parameters.  The  error  function was  then computed as  the  difference between  these reference
functions and the estimated ones (both averaged in the frequency band of interest). To evaluate
the performances in retrieving the connections between areas, the same index used in the case of
the SEM was adopted, but with light differences of notation, i.e. the Frobenius norm of the matrix
reporting the differences between the values of the estimated and the imposed connections (Total
Relative Error);



(2)

In the previous formula,  represents the average value of DTF function from j to i, in

the  frequency  band  of  interest.  For  both  SEM and  DTF the  simulations  were  performed  by
repeating for 50 times each generation-estimation procedure, in order to increase the robustness of
the successive statistical analysis.

Statistical analysis

The results obtained were subjected to separate Analysis of Variance (ANOVA). The main factors
of the ANOVAs for the DTF method were the SNR (with five levels: 0.1, 1, 3, 5, 10) and the
signal  LENGTH  (with  six  levels  for  the  :  960,  2880,  4800,  9600,  19200,  38400  samples,
equivalent to 15, 45, 75, 150, 300, 600 seconds at 64 Hz of sampling rate). In the case of SEM
method, the main factors were identical but the length has only four levels (equal to 60, 190,310,
and 610 seconds at 64 Hz). For all the methodologies used, ANOVA was performed on the error
index adopted (Relative Error).  The correction of Greenhouse-Gasser for  the violation of the
spherical  hypothesis  was  used.  The  post-hoc  analysis  with  the  Duncan  test  at  the  p  =  0.05
statistical significance level was then performed.

2.4. Imaging cortical connectivity in humans

The methods of estimating connectivity patterns by using the DTF and SEM have been evaluated
in human subjects using a simple movement task [Astolfi et al., 2005a,b,c; Babiloni et al., 2005a].
In particular, we considered the right hand finger tapping movement, externally paced by a visual
stimulus. This task was chosen for it has been very well studied in literature with different brain
imaging techniques like EEG or functional Magnetic Resonance Imaging [Jancke et al., 2000,
Gevins et al., 1989, Gerloff et al., 1998].

Subject and Experimental Design

Three right-handed healthy subjects (age 23.3 ± 0.58, 1 male and 2 females) participated in the
study after the informed consent was obtained. Subjects were seated comfortably in an armchair
with both arms relaxed and resting on pillows and they were requested to perform fast repetitive
right  finger  movements.  During  motor  task,  subject  was  instructed  to  avoid  eye  blinks,
swallowing, or any movement other than the required finger movements.

Head and cortical models

Subject's  realistic  head models  reconstructed from T1-weighted MRIs  were employed in this
study. Scalp,  skull and dura mater compartments were segmented from MRIs with a software
originally developed at the Dept.  of Human Physiology of the University of Rome, and such
structures were triangulated with about 1,000 triangles for each surface. The source model was
built with the following procedure: (i) the cortex compartment was segmented from MRIs and
triangulated obtaining a fine mesh with about 100,000 triangles; (ii) a coarser mesh was obtained
by resampling the fine mesh previously described to about 5,000 triangles. The downsampling
was  performed  with  an  adaptive  algorithm  aimed  to  represent  with  a  sufficient  number  of
triangles the part of the cortex where the radius of curvature was high, like for instance during the



bending of a sulcus, while attempted to represent with few triangles the part of the cortical surface
sufficiently  flat,  like  for  instance  on  the  upper  part  of  the  gyri;  (iii)  an  orthogonal  unitary
equivalent current  dipole was placed in  each node  of  the triangulated surface,  with direction
parallel to the vector sum of the normals to the surrounding triangles.

EEG recordings

Event related potential (ERP) data were recorded with 96 electrodes; data were recorded with a
left ear reference and submitted to the artifact removal processing. Six hundred ERP trials of 600
ms of duration were acquired. A/D sampling rate was 250Hz. The surface electromyographic
(EMG) activity of the muscle was also collected. The onset of the EMG response served as zero
time. All data were visually inspected, and trials containing artifacts were rejected. We use semi-
automatic supervised threshold criteria for the rejection of trials contaminated by ocular and EMG
artifacts, as described in details elsewhere [Moretti et al., 2003]. After the EEG recording, the
electrode positions were digitized using a 3D localization device with respect to the anatomic
landmarks of the head (nasion and two preauricular points). The analysis period for the potentials
time-locked to the movement execution was set from 300 ms before to 300 ms after the EMG
trigger (0 time); the ERP time-course was divided in two phases relative to the EMG onset; the
first, labeled as "PRE" period, marked the 300 ms before the EMG onset and was intended as a
generic preparation period; the second labeled as "POST", lasted up to 300 ms after the EMG
onset and was intended to signal the arrival of the movement somatosensory feedback. We kept
the same PRE and POST nomenclature for the signals estimated at the cortical level.

Estimation of Cortical Source Current Density

The solution of the following linear system:

L = d + e (3)

provides  an  estimate  of  the  dipole  source  configuration  z  that  generates  the  measured  EEG
potential distribution d. The system includes also the measurement noise n, supposed normally
distributed.

In Eq. (3)  L is  the lead field or the forward transmission matrix,  in  which each j-th  column
describes the potential distribution generated on the scalp electrodes by the j-th unitary dipole.
The current density solution vector ξ was obtained as follows [Grave de Peralta Menendez, 1999]:

(4)

where M,  N  are  the matrices  associated to  the metrics  of  the data  and of  the source  space,
respectively, λ is the regularization parameter and || z ||M represents the M-norm of the vector z.
The solution of Eq. (4) is given by the inverse operator G as follows:

(5)

An optimal regularization of this linear system was obtained by the L-curve approach [Hansen,
1992]. As a metric in the data space we used the identity matrix, while as a norm in the source
space we use the following metric:

(6)

where (N-1)ii is the i-th element of the inverse of the diagonal matrix N and all the other matrix



elements Nij, for each i≠j, are set to 0. The L2 norm of the i-th column of the lead field matrix L is
denoted by ||Li||.

Here,  we present a  characterization of the source metric N that can provide the basis for the
inclusion of the information about the statistical hemodynamic activation of i-th cortical voxel
into the linear inverse estimation of the cortical source activity.  In the fMRI analysis,  several
methods to quantify the brain hemodynamic response to a particular task have been developed.
However,  in  the  following  we  analyze  the  case  in  which  a  particular  fMRI  quantification
technique  has  been used,  called Percent  Change (PC)  technique.  This measure quantifies the
percentage increase of the fMRI signal during the task performance with respect the rest state
[Kim  et  al.,  1993].  The  visualization  of  the  voxels'  distribution  in  the  brain  space  that  is
statistically increased during the task condition with respect to the rest is called the PC map. The
difference between the mean rest- and movement-related signal intensity is generally calculated
voxel-by-voxel. The rest-related fMRI signal intensity is obtained by averaging the pre-movement
and recovery fMRI. Bonferroni-corrected Student's t-test is also used to minimize alpha inflation
effects  due  to  multiple  statistical  voxel-by-voxel  comparisons  (Type  I  error;  p<0.05).  The
introduction of fMRI priors into the linear inverse estimation produces a bias in the estimation of
the current density strength of the modeled cortical dipoles. Statistically significantly activated
fMRI voxels,  which are returned  by the percentage  change approach [Kim et  al.,  1993],  are
weighted to account for the EEG measured potentials.

In fact, a reasonable hypothesis is that there is a positive correlation between local electric or
magnetic activity and local hemodynamic response over time. This correlation can be expressed
as a decrease of the cost in the functional Φ of Eq. 4 for the sources zj in which fMRI activation
can be observed. This increases the probability for those particular sources zj to be present in the
solution of the electromagnetic problem. Such thoughts can be formalized by particularizing the
source metric N, to take into account the information coming from the fMRI. The inverse of the
resulting metric is then proposed as follows [Babiloni et al., 2000]:

(7)

in  which (N-1)ii  and ||A-i||  has  the same meaning described above.  g(αi)  is  a  function of  the
statistically significant percentage increase of the fMRI signal assigned to the i-th dipole of the
modeled source space.  Fixing K = 1 let us disregard fMRI priors,  thus returning to a purely
electrical solution; a value for K » 1 allows only the sources associated with fMRI active voxels
to  participate  in  the  solution.  It  was  shown that  a  value  for  K in  the  order  of  10 (90%  of
constraints for the fMRI information) is useful to avoid mislocalization due to over constrained
solutions [Liu et al., 1998, Dale et al., 2000, Liu, 2000].

Regions of interest (ROIs)

Several  cortical  regions  of  interest  (ROIs)  were  drawn  by  two  independent  and  expert
neuroradiologists on the computer-based cortical reconstruction of the individual head models. In
the case in which the SEM methodology was adopted, we selected ROIs based on previously
available  knowledge  about  the flow of  connections  between  different  cortical  macroareas,  as
derived from neuroanatomy and fMRI studies. In particular, information flow were hypothesized
to exist from the parietal (P) areas toward the sensorimotor (SM), the premotor (PM) and the
prefrontal (PF) ones [Gerloff et al., 1998, Jancke et al., 2000, Urbano et al., 1998], whereas the
prefrontal areas (PF) were defined by including at large the Brodmann areas 8, 9, and 46; the
premotor areas (PM) by including the Brodmann area 6, the sensorimotor areas (SM) including
the Brodmann areas 4,  3,  2,  and 1,  and the parietal  areas (P),  generated by the union of the
Brodmann areas 5 and 7 (See colored areas in Fig. 5).

In the case in which the DTF method was used we select the ROIs representing the left and right



primary somatosensory (S1) areas included the Brodmann areas (BA) 3,  2, 1, while  the ROIs
representing the left and right primary motor (MI) included the BA 4. The ROIs representing the
Supplementary Motor Area (SMA) were obtained from the cortical voxels belonging to the BA 6.
We further separate the proper and anterior SMA indicated with BA 6P and 6A, respectively.
Furthermore,  ROIs  from the right  and  the left  parietal  areas  including  the  BA 5,  7  and  the
occipital areas (BA 19) were also considered. In the frontal regions the BA 46, 8, 9 were also
selected. (See colored areas in Fig. 6).

Cortical current waveforms

By using the relations described above, at each time point of the gathered ERP data an estimate of
the signed magnitude of the dipolar moment for each of the 5,000 cortical dipoles was obtained.
In fact, since the orientation of the dipole was already defined to be perpendicular to the local
cortical surface of the model, the estimation process returned a scalar rather than a vector field. In
order to obtain the cortical current waveforms for all the time points of the recorded EEG time
series, we used a unique "quasi-optimal" regularization λ value for all the analyzed EEG potential
distributions. Such quasi-optimal regularization value was computed as an average of the several
λ values obtained by solving the linear inverse problem for a series of EEG potential distributions.
These distributions are characterized by an average Global Field Power (GFP) with respect to the
higher  and lower GFP values  obtained during all  the recorded waveforms. The instantaneous
average  of  the  dipole's  signed  magnitude  belonging  to  a  particular  ROI  generates  the
representative time value of the cortical activity in that given ROI. By iterating this procedure on
all  the  time  instants  of  the  gathered ERP,  the  cortical  ROI current  density  waveforms were
obtained and they could be taken as representative of the average activity of the ROI, during the
task performed by the experimental subjects. These waveforms could then be subjected to the
SEM and DTF processing in order to estimate the connectivity pattern between ROIs, by taking
into account the time-varying increase or decrease of the power spectra in the frequency bands of
interest. Here, we present the results obtained for the connectivity pattern in the alpha band (8-12
Hz),  since  the  ERP data  related to  the  movement  preparation and execution are  particularly
responsive in such frequency interval (for review, see [Pfurtscheller and Lopes da Silva, 1999]).

3. Results

3.1. Computer Simulations for SEM

Each set of signals was generated as described in the Methods section, in order to fit a predefined
connection model as well as to respect different levels of the two factors SNR and LENGTH of
the recordings. The signals resulting were analyzed by means of the freeware software LISREL,
which gave as a result an estimation of the connection strengths. Fig. 2 shows the connection
model used in the signal generation and in the parameter estimation. The arrows represent the
existence of a connection directed from the signal zi toward the signal zj, while the values on the
arcs  aij  represent  the  connection  parameters.  The  results  obtained  for  the  statistical  analysis
performed on the 50 repetition of the procedure are reported in Fig. 3, representing the plot of
means of the Relative Error with respect to signal LENGTH and SNR. ANOVA has pointed out a
rather strong statistical significance of both factors considered. The factors SNR and LENGTH
were  both  highly  significant  (factor  LENGTH  F=288.60,  p<0.0001,  factor  SNR  F=  22.70,
p<0.0001). Fig.3a shows the plot of means of the Relative Error with respect to the signal length
levels,  which reveals a  decrease of the connectivity  estimation error  with the increase of  the
length of the available data. Fig 3b shows the plot of means with respect to different SNR levels
employed in the simulation. Since the main factors were found highly statistically significant,
post-hoc  tests  (Duncan  at  5%) were  then  applied.  Such  tests  showed  statistically  significant
differences between all levels of the factor LENGTH, while there is no statistically significant
difference between levels 3, 5 and 10 of the factor SNR.



3.2. Computer Simulations for DTF

The  connectivity  model  used in  the  signal  generation  was  the  same  employed  for  the  SEM
simulation, which is shown in the Fig. 2 already described. A multivariate autoregressive model
of order 8 has been fitted to each set of simulated data. Then, the normalized DTF functions have
been computed from each autoregressive model. The procedure of signal generation and DTF
estimation has been carried out for 50 times for each level of factors SNR and LENGTH. The
index  of  performances used, i.e.  the  Relative Error,  has  been computed  for  each generation-
estimation procedure performed, and then subjected to Analysis of Variance (ANOVA). In this
statistical  analysis,  Relative  Error  was  the  dependent  variable,  while  the  different  SNR  and
LENGTH imposed in the signal generation were the main factors.  ANOVA revealed a strong
statistical influence of all the main factors (SNR and LENGTH; for Relative Error we obtained:
SNR: F=3295.5, p<0.0001; LENGTH: F= 1012.4, p<0.0001). Figure 4 shows the influence of
factors SNR and LENGTH on Relative Error. In detail, Fig.4a shows the plot of means of the
Relative  Error  with  respect  to  the  signal  LENGTH  levels,  which  reveals  a  decrease  of  the
connectivity estimation error with the increase of the length of the available data; Fig 4b shows
the plot of means with respect to different SNR levels employed in the simulation. In particular,
for a SNR between 3 and 10, the expected error in the estimation of the connectivity pattern was
generally under the 7%, and the same values are obtained for ERP recording longer than

Figure 3. Results of ANOVA performed on the Relative Error resulting from SEM simulations. A): plot of means with respect to
signal LENGTH as a function of time (seconds). ANOVA shows a high statistical significance for factor LENGTH (F=288.60,
p<0.0001). Post-hoc test (Duncan performed at 5% level of significance) shows statistically significant differences between all



levels. B): plot of means with respect to Signal to Noise Ratio. Here, too, a high statistical influence of factor SNR on the error in
the estimation is shown (F= 22.70, p<0.0001). Duncan post-hoc test (performed at 5%) points out that  there is no statistically
significant difference between levels 3, 5 and 10 of factor SNR.

Figure 4. Results of ANOVA performed on the Relative Error resulting from DTF simulations. A): plot of means with respect to
signal LENGTH as a function of time (seconds). ANOVA shows a high statistical significance for factor LENGTH (F=1012.36,
p<0.0001). Post-hoc test (Duncan performed at 5% level of significance) shows statistically significant differences between levels
15 and 45 seconds at 64 Hz sampling rate (equivalent of 960 and 2880 samples) of the factor LENGTH and all the other levels.
B): plot of means with respect to Signal to Noise Ratio. Here, too, a high statistical influence of factor SNR on the error in the
estimation is shown (F= 3295.45, p<0.0001). Duncan post-hoc test (performed at 5%) points out that there is no statistically
significant difference between levels 3, 5 and 10 of factor SNR.

150  seconds.  Since  the  main  factors  have  been  found  statistically  significant,  post-hoc  tests
(Duncan test at 5%) were then applied. The results have shown statistically significant differences
between  the  levels  15  and  45  seconds  (960  and  2880  samples,  respectively)  of  the  factor
LENGTH and the other levels, while there is no statistically significant difference between levels
3, 5 and 10 of the factor SNR.

3.3. Imaging cortical connectivity in humans

The results of the application of the SEM method for the estimation of the connectivity on the
event related potential  recordings is  depicted in  Fig 5,  which shows the statistical  significant
cortical connectivity patterns obtained for the period preceding the movement onset in the subject



#1, in the alpha frequency band. Each pattern is represented with arrows, that connect one cortical
area ("the source") to another one ("the target"). The colors and sizes of arrows code the level of
strength of the functional connectivity observed between ROIs. The labels indicate the names of
the ROIs employed. Note that the connectivity pattern during the period preceding the movement
in the alpha band involves mainly the parietal left ROI (Pl) coincident with the Brodmann areas 5
and 7, functionally connected with the left and right premotor cortical ROIs (PMl and PMr), the
left sensorimotor area (SMl), and both the prefrontal ROIs (PFl and PFr). The stronger functional
connections are  relative  to  the  link  between the  left  parietal  and the premotor  areas of  both
cerebral hemispheres.  After the preparation and the beginning of the finger movement, in the
POST period changes in the connectivity pattern can be noted. In particular, the origin of the
functional connectivity links is  positioned in the sensorimotor left cortical  areas (SMl).  From
there, functional links are established with prefrontal left (PFl), both the premotor areas (PMl.
PMr). A functional link emerged in this condition connecting the right parietal area (Pr) with the
right sensorimotor area (SMr). The left parietal area (Pl) so active in the previous condition was
instead linked with the left sensorimotor (SMl) and right premotor (PMr) cortical areas.



Figure 5. Figure shows the cortical connectivity pattern obtained with the SEM method, for the period preceding and following
the movement onset in the subject, in the alpha (8-12 Hz) frequency band. The realistic head model and cortical envelope of the
subject  analyzed obtained from sequential  MRIs is  used to display the connectivity  pattern.  Such pattern is  represented with
arrows moving from one cortical area toward another one.  The colors and sizes of  arrows code the level of  strengths of  the
functional connectivity observed between ROIs. The labels are relative to the name of the ROIs employed. A): Connectivity pattern
obtained from ERP data before the onset of the right finger movement (electromyographic onset; EMG). B): Connectivity patterns
obtained after the EMG onset. Same conventions as above.

Connectivity  estimations  performed  by  DTF  on  the  movement  related  potentials  were  first
analyzed from a statistical point of view via the shuffling procedure above described. The order of
the MVAR model used for each DTF estimation had to be determined for each subject and in each
temporal interval of the cortical waveforms segmentation (PRE and POST interval). The Akaike
Information Criterion (AIC) procedure was used and returned an optimal order between 6 and 7
for all  the subjects,  in  both PRE and POST intervals.  On such cortical  waveforms,  the DTF



computational  procedure  described  in  the  Methods  section  was  applied.  Figure  6  shows the
cortical connectivity patterns obtained for the period preceding and following the movement onset
in the subject #1 examined. Here, we present the results obtained for the connectivity pattern in
the alpha band (8-12 Hz), since the ERP data related to the movement preparation and execution
are particularly responsive in such frequency interval (for a review, see [Pfurtscheller and Lopes
da Silva, 1999]). The task-related pattern of cortical connectivity was obtained by calculating the
DTF between  the  cortical  current  density  waveforms estimated in  each ROI depicted on the
realistic  cortex model.  The connectivity  patterns between the ROIs have been represented by
arrows pointing from one cortical area toward another one. The arrows color and size code the
strength of the functional connectivity estimated between the source and the target ROI. Labels
indicate the ROIs involved in the estimated connectivity pattern. Only the cortical connections
statistically significant at p < 0.01 are represented, according to the thresholds obtained by the
shuffling procedure described above. It can be noted that the connectivity patterns during the
period preceding and following the movement in the alpha band involves bilaterally the parietal
and sensorimotor ROIs, which are also functionally connected with the premotor cortical ROIs. A
minor involvement of the prefrontal ROIs is also observed. The stronger functional connections
are relative to the link between the premotor and prefrontal areas of both cerebral hemispheres.
After  the  preparation  and  the  beginning  of  the  finger  movement,  in  the  POST period  slight
changes in the connectivity patterns can be noted.



Figure 6. Cortical connectivity patterns obtained by the DTF method, for the period preceding and following the movement onset,
in the alpha (8-12 Hz) frequency band. The patterns are shown on the realistic head model and cortical envelope of the subject
analyzed,  obtained  from sequential  MRIs.  Functional  connections are represented with  arrows,  moving from a  cortical  area
toward another one. The arrows' colors and sizes code the strengths of the connections. A): Connectivity pattern obtained from
ERP data before the onset of the right finger movement (electromyographic onset; EMG). B): Connectivity patterns obtained after
the EMG onset. Same conventions as above.

3.4. Application of the multimodal EEG-fMRI integration techniques to the estimation of sources of
self-paced movements

In this section we will provide a practical example of the application of multimodal integration
techniques of EEG and fMRI (as theoretically described in the previous sections) to the problem
of detection of neural sources subserving unilateral self-paced movements in humans. The high
resolution EEG recordings (128 scalp electrodes) were performed on normal healthy subjects by
using the facilities available at the laboratory of the Department of Human Physiology, University
of Rome "La Sapienza".  Realistic  head models were used, each one provided with a  cortical
surface  reconstruction  tessellated  with  5,000  current  dipoles.  Separate  block  design  fMRI



recordings of the same subjects were performed by using the facilities of the Istituto Tecnologie
Avanzate  Biomediche  (ITAB)  of  Chiety,  Italy.  Distributed  linear  inverse  solutions  by  using
hemodynamic constraints were obtained according to the methodology presented above.

Figure 7 presents the typical  situation occurring when different imaging methods  are used to
characterize the brain activity generated during a specific task. In particular, the task performed
by the subject was the self-paced movement of the middle finger of the right hand. Such task was
performed not simultaneously under three different scanners, namely the fMRI, the HREEG and
the MEG ones. On the left of the Fig.7 there is a view of some cerebral areas active during the
movement, as reported by fMRI. The maximum values of the fMRI responses are located in the
voxels  roughly  corresponding  to  the  primary  somatosensory  and  motor  areas  (hand
representation)  contralateral  to  the  movement.  In  fact,  during  the  self-paced  unilateral  finger
extension, somatosensory reafference inputs from finger joints as well as cutaneous nerves are
directed to the primary somatosensory area, while centrifugal commands from the primary motor
area are directed toward the spinal cord via the pyramidal system. At the centre of the figure is
represented the dura mater potential distribution estimated with the use of the SL operator over a
cortical surface reconstruction. The deblurred distribution is obtained at the 100 ms after the EMG
onset of the right middle finger. Note the characteristic reverse negative and positive SL fields on
the  left  hemisphere.  It  is  easy  to  appreciate  the  different  time  resolution  of  the  different
techniques, being the fMRI data relative to the whole time course of the experiment, while the
high resolution EEG data is relative to a particular on ms of the cortical electromagnetic field
evolution related to the same experiment.

Simulations performed to test the efficacy of the multimodal integration of HREEG and fMRI
return the information that the inclusion of fMRI priors improve the reconstruction of cortical
activity [Liu et al., 1998, Babiloni et al., 2003]). Figure 8 upper row (A) presents three cortical
current density distributions. The left one showed the cortical regions roughly corresponding to
the supplementary motor area and the left motor cortex with the imposed activations represented
in black. The imposed activations generated a potential distribution over the scalp electrodes (not
showed in the figure). From this potential distribution different inverse operators without and with
the use of fMRI priors (that are located in the supplementary and left motor areas) attempted to
estimate the current density distribution. The current density reconstruction at the centre of the
first row of the Fig. 8 presents the results of the estimation of sources presented on the left map
without the use of fMRI priors by using the minimum norm estimate procedure.  The current
density reconstruction on the right of the figure presents the cortical activations recovered by the
use of fMRI priors.

The  lower  row  of  the  Fig.  8  (B)  illustrates  the  cortical  distributions  of  the  current  density
estimated with the described linear inverse approaches from the potential distribution relative to
the  movement  preparation,  about  200  ms  before  a  right  middle  finger  extension.  Such  an
approach used no-fMRI constraint as well the fMRI constraints . On the left of the Fig. 8B is
presented the topographic map of readiness potential distribution recorded at the scalp about 200
ms before a right middle finger extension for another subject analyzed. Note the extension of the
maximum of  the  negative  scalp  potential  distribution,  roughly  overlying  frontal  and  centro-
parietal  areas contralateral to  the movement.  The cortical  distributions  are represented on the
realistic subject's



Figure 7. Figure presents on the left a view of some cerebral areas active during the self-paced movement of the right finger, as
reported by fMRI. At the righ of the figure is represented the dura mater potential distribution estimated with the use of the SL
operator over a cortical surface reconstruction. The deblurred distribution is obtained at the 100 ms after the EMG onset of the
right middle finger.

head volume conductor model in the center and at the right of the Fig. 8B. Linear inverse solution
obtained with the fMRI priors presents more localized spots of activations with respect to those
obtained with the no fMRI priors. Remarkably, the spots of activation were localized in the hand
region of the primary somatosensory (post-central) and motor (pre-central) areas contralateral to
the movement. In addition, spots of minor activation were observed in the frontocentral medial
areas (including supplementary motor area) and in the primary somatosensory and motor areas of
the ipsilateral hemisphere.

Figure 8. The upper row of the Figure (A), presents three cortical current density distributions. The left one showed the simulated
cortical regions roughly corresponding to the supplementary motor area and the left motor cortex with the imposed activations
represented in black. The current density reconstruction at the centre of the figure presents the results of the estimation of sources
presented on the left map without the use of fMRI priors, by using the minimum norm estimate procedure. The current density
reconstruction on the right of the figure presents the cortical activations recovered by the use of fMRI priors. The second row of
the Figure B) illustrates the scalp (left) and the cortical distributions (center and right) of the current density estimated with the
linear inverse approaches from the potential distribution relative to the movement preparation, about 200 ms before a right middle
finger extension. The distributions are represented on the realistic subject's head volume conductor model. Left: scalp potential
distribution recorded 200 ms before movement execution. Center: cortical estimate obtained without the use of fMRI constraints,
based on the minimum norm solutions. Right: cortical estimate obtained with the use of fMRI constraints.



Another example of multimodal integration between EEG and fMRI related to a simple voluntary
movement task by using only the hemodynamic information relative to the strength of fMRI data
is provided in Fig. 9.

Fig. 9A shows the amplitude gray scale maps of linear source inverse estimates from EEG (first
column) and combined fMRI-EEG (second column) data. The estimates were computed about 50
ms before (Readiness Potential peak, RPp; first row) and 20 ms after (Motor Potential peak, MPp;
second row) the onset of the electromyographic response to voluntary right finger movements.
The linear inverse estimates of neural activity were mapped over the cortical compartment of a
realistic  MRI-constructed subject's  head  model.  The  RPp map (first  row)  presents  maximum
responses in the contralateral M1 and S1 and in the modeled SMA. Activation is stronger in
proximity of the movement onset (MPp maps, second row). With respect to the high resolution
EEG solutions (left column), the fMRI-EEG solutions present more circumscribed M1, S1, and
SMA responses (second column). In addition, the contralateral M1 and S1 responses have similar
intensity and are spatially dissociated.

Fig. 9B shows the cortical distribution of the current density estimated with the linear inverse
approach from the potential distribution of the movement-related potentials with the inclusion of
the fMRI priors. The current density waveforms relative to the average values of the estimated
activations along the task performed are also presented. It is worth of note that the cortical activity
relative  to  the  Brodmann  areas  is  here  estimated  with  just  the  use  of  non-invasive
electrophysiological and hemodynamical measurement procedures.

Figure 9. The left part of the Figure (A) shows

amplitude  gray  scale  3-D  maps  obtained  by  linear  inverse  estimates  from  high  resolution
electroencephalographic (HREEG) and combined functional magnetic resonance image (fMRI)-
HREEG data computed from a subject about 50 ms before (readiness potential peak, RPp) and 20
ms after (motor potential peak, MPp) the onset of the electromyographic activity associated with
self-paced right middle finger movements. Percent gray scale of HREEG and combined fMRI-
HREEG data is normalized with reference to the maximum amplitude calculated for each map.
Maximum negativity (-100%) is coded in white and maximum positivity (+100%) in black. The
right part of the Figure (B) presents the estimation of the current density waveforms in regions of
interest (ROIs) coincident with the Brodmann areas. The waveforms estimated are relative to the
estimation performed with the use of the information from hemodynamic measurements.

4. Discussion



4.1. Simulation Results for SEM and DTF

In this section we would like to briefly discuss the main aspects of the simulations performed for
both SEM and DTF [Astolfi et al., 2005a, b,c], in order to stress comparatively they merits and
drawbacks. The experimental design adopted for the employed simulation study was aimed to
analyze the most common situations in which the proposed application of SEM technique to high
resolution EEG data may take place. The levels chosen for main factor levels SNR and LENGTH,
covered the most typical situations that can occur in this analysis. The obtained results indicate a
clear influence of different levels of the main factors SNR and LENGTH on the efficacy of the
estimation of cortical connectivity via SEM. In detail, a) a variable SNR level imposed on the
high  resolution  EEG  data  significantly  influenced  the  accuracy  of  the  connectivity  pattern
estimation. In particular, an SNR=3 seemed to be satisfactory in order to obtain a good accuracy,
since there were not  significant differences in the performance for higher values; b)  a  usable
accuracy in the estimation of connectivity between cortical areas was achieved with a minimum
of  190 seconds of  EEG registration (equivalent,  for  instance,  to  380 trials of  500 ms each).
However, an increase of the length of the available EEG data is always related to a decrease of the
connectivity estimation error.

It might be argued how the present findings, obtained by using several levels of cortical SNR,
could be directly  extended to the SNR related to the scalp recorded EEG data.  In  general,  a
difference exists between the imposed SNR at the cortical level and those observed at the scalp
level. This difference is due to the errors in the estimation procedure of the cortical activity. These
errors, already described in simulation studies in literature [Babiloni et al., 2004, Liu et al., 2002,
Liu, 2000], could be treated as additional source of noise in the propagation from the cortex to the
scalp.  Such  simulations  indicated  that  for  high  resolution  EEG studies  with  a  realistic  head
modeling  tessellation ranging  from 3000  to 5000  dipoles,  the  Relative Errors  in  the  cortical
estimation are less than 10%. Hence, we could insert this 10% error in the cortical estimate due to
the inversion process as an additional noise source error. In this hypothesis, the cortical SNR can
hardly be higher than 10, even if the scalp SNR is very high, due to the inversion error introduced
by linear inverse procedure. On the other hand, when the scalp SNR is much lower than 10, the
contribution of the inversion error vanishes. In the intermediate cases, the cortical SNR is only
slightly lower than scalp SNR; a scalp SNR equal to 3, for instance, would yield a cortical SNR
equal  to  2.3.  It  is  worth  noticing that  these SNR conditions  are  generally  obtained  in  many
standard EEG recordings of event-related activity in humans, usually characterized by values of
SNR ranging from 3 (movement related potentials) to 10 (sensory evoked potentials) and a total
length of the recordings starting from 50 seconds [Regan, 1989].

The results obtained with the SEM technique seem to indicate the opportunity to use connectivity
models  not  too  detailed,  in  terms  of  cortical  areas  involved,  as  a  first  step  of  the  network
modeling. By using a coarse model of the cortical network to be fitted on the EEG data, there is
an increase of the statistical power and a decrease of the possibility to generate an error in a single
arc link [Horwitz, 2003]. In the present human study, such observation was taken into account by
selecting a coarse model for the brain areas subserving the task being analyzed. This simplified
model does not take complete account all the possible regions engaged in the task, and all the
possible  connections  between  them.  Elaborate  models,  permitting  also  cyclical  connections
between regions can become computationally unstable [McIntosh and Gonzalez-Lima, 1994].

Our findings indicated a clear influence of different levels of the main factors SNR and LENGTH
on the efficacy of the estimation of cortical connectivity via DTF. In particular, it has been noted
that a SNR equals to 3 and a LENGTH of the estimated cortical data of 75 seconds at 64 Hz
(4800 data samples) were necessary to decrease significantly the errors on the indexes of quality
adopted. The information obtained by the simulation study were used to evaluate the applicability
of this method to actual event-related recordings. The gathered ERP signals related to the finger
tapping data analyzed showed an SNR between 3 and 5. Furthermore, the total recording length of
the gathered ERP data was obtained by 600 trials of 600 ms length. Therefore, according to the



simulation results,  we applied the DTF method on the estimated cortical current density  data
expecting a limited amount of errors in the estimation of cortical connectivity patterns.

The use  of  DTF to assess cortical  connectivity  is  an interesting  procedure,  since it  provides
directional information, i.e. it allows establishing the direction of the information flow between
two particular cortical areas. This information is not generally available by means of several other
techniques  to  assess  coupling  between  signals,  as  for  instance  the  standard  coherence.  The
evaluation of several methods for the computation of the functional connectivity between couple
of EEG/MEG signals was recently performed [David et al.,  2004]. It has been concluded that
although  nonlinear  methods,  as  mutual  information,  nonlinear  correlation  and  generalized
synchronization [Roulston,  1999, Pijn  et  al.,  1992,  Stam, 2002,  Stam et  al.,  2003],  might  be
preferred when studying EEG broadband signals which are sensitive to dynamic coupling and
nonlinear interactions expressed over many frequencies, the linear measurements are still  very
useful since they afford a rapid and straightforward characterization of functional connectivity.

4.2. Imaging cortical connectivity in humans

In the case in which the SEM methodology was applied on the recorded high resolution EEG data
our model of interactions between cortical areas is  based on previous results on similar tasks
obtained  with  fMRI.  Such  model  is  sufficient  to  address  some key  questions  regarding  the
influence of the premotor and motor areas toward the prefrontal cortical areas during the task
analyzed. The finger tapping data analyzed here present a high SNR and a large number of trials,
resulting in an extended record of ERP data. Hence, the simulation results suggest the optimal
performance  of  the  SEM method  as  applied  to  the  human  ERP  potentials.  The connectivity
pattern estimated via SEM reveals the potentiality of the employed methodology including the use
of high resolution EEG recordings, the generation of a realistic head model by using sequential
MRIs, and the estimation of the cortical activity with the solution of linear inverse problem. With
this methodology, it  would be possible not only to  detect which of the cortical areas activate
during  a  particular  (motor)  task  but  also  how  these  areas  are  effectively  inter-connected  in
subserving that given task. In particular,  the influence of the parietal  area has been observed
toward the premotor cortical areas during the task preparation, consistent with the role that the
parietal areas have in the engagement of attentive resources as well as temporization, as assessed
by several electrophysiological studies on primate or hemodynamical studies on humans [Culham
and Kanwisher, 2001]. It is of interest the shift of the cortical areas behaving as the most relevant
origin  of  functional  links,  occurring  when  the  somatosensory  reafferences  arrive  from  the
periphery to the cortex. In fact, the left sensorimotor area becomes very active with respect to the
left parietal one, which, in turn, are used to be mainly engaged in the time period preceding the
finger movement. Connections between the sensorimotor area and the premotor and left prefrontal
areas are appropriate to distribute the information related to the movement of the finger to the
higher functional regions (prefrontal and premotor).

From a physiological point of view, our results obtained by estimating the connectivity patterns
with the DTF are consistent and integrate those already present in literature on simple finger
movements, as they have been obtained with neuroelectric measurements.  A study employing
ERP  measurements  from  scalp  electrodes  and  the  assessment  of  connectivity  with  the  non
directional  coherence  methods  has  underlined  the  role  of  the  primary  sensorimotor  and
supplementary  motor  areas  in  the  processing  of  the  movements  [Gerloff  et  al.,  1998].  The
connectivity  patterns  depicted  in  the  premotor  and  prefrontal  ROIs  here  analyzed,  are  in
agreement with earlier hypotheses formulated in literature [Sekihara and Scholz, 1996, Classen et
al., 1998, Rothwell et al., 1991]. The aforementioned studies have suggested as the dorsolateral
and the  ventral  premotor cortices  are specifically  activated by movements guided by sensory
information as opposed to movements carried out with no sensory control. The activity noted in
the parietal areas (BA 5) in the present study, could be associated with the role that this area has in
the  somatosensory-motor  integration  underlying  movement  performing.  In  fact,  it  has  been
hypothesized that this area could be regarded as a higher-order somatosensory zone devoted to the



analysis of proprioceptive information from joints for the appropriate motor control [Rizzolatti et
al., 1998].

4.3. Application of the multimodal EEG-fMRI integration technique.

In  general,  there  is  a  rather  large  consensus  about  the  need  and  utility  of  the  multimodal
integration of metabolic, hemodynamic and neuroelectrical data. Results reviewed in literature as
well as those presented here suggest a real improvement in the spatial details of the estimated
neural  sources  by  performing  multimodal  integration.  However,  while  for  the  multimodal
integration of EEG and magnetoencephalographic (MEG) data a precise electromagnetic theory
exists, a clear mathematical and physiologic link between metabolic demands and firing rates of
the neurons is still lacking. It is out of doubt that when this link is further clarified, the modeling
of the interaction between hemodynamic and neural firing rate can be further refined. This will
lead us to a more proper characterization of the issues of visible and invisible source that at the
moment  represent  the  major  concern  about  the  applicability  of  the  multimodal  integration
techniques [Nunez and  Silberstein,  2000].  Recently,  it  was  also  suggested as the  multimodal
integration of high resolution EEG and fMRI will return improved estimations of brain activity as
well  as of  the functional  connectivity  between cortical  areas  as  returned  by the use  of  DTF
[Babiloni et al., 2005a,b]-

The results for the multimodal integration of EEG/MEG and fMRI presented here are in line with
those regarding the coupling between cortical electrical activity and hemodynamic measure as
indicated by a direct comparison of maps obtained using voltage-sensitive dyes (which reflect
depolarization  of  neuronal  membranes  in  superficial  cortical  layers)  and  maps  derived  from
intrinsic optical signals (which reflect changes in light absorption due to changes in blood volume
and oxygen consumption, [Shoham et al., 1999]). Furthermore, previous studies on animals have
also  shown  a  strong  correlation  between  local  field  potentials,  spiking  activity,  and  voltage-
sensitive dye signals [Arieli et al., 1996]. Finally, studies in humans comparing the localization of
functional  activity  by  invasive  electrical  recordings  and  fMRI  have  provided  evidence  of  a
correlation  between  the  local  electrophysiological  and  hemodynamic  responses  [Puce  et  al.,
1997]. It is worth of note that recently a study aimed at investigating this link has been produced
[Logothetis et al., 2001] In this study, intracortical recordings of neural signals and simultaneous
fMRI signals were acquired in monkeys. The comparisons were made between the local field
potentials,  the  multi-unit  spiking  activity  and  BOLD signals  in  the  visual  cortex.  The  study
supports the link between the local field potentials and BOLD mechanism, which is at the base of
the procedure of the multimodal integration of EEG/MEG with fMRI described above. This may
suggest that the local fMRI responses can be reliably used to bias the estimation of the electrical
activity in the regions showing a prominent hemodynamic response.

5. Conclusions

Taken together, our recent findings return the information that a rather accurate estimation of the
cortical connectivity patterns can be achieved by using realistic geometry models for the head and
cortical  surfaces,  high  resolution  EEG  recordings,  and  effective  and  functional  cortical
connectivity by using the SEM and DTF methods, respectively [Astolfi et al., 2005a,b,c]. The
simulation results suggest that in conditions largely met in the ERPs recordings, (SNR at least 3
and a length of the recording EEG superior to 75 seconds at 64 Hz, or to 4800 data samples), the
computation  of  functional  connectivity  by  SEM  or  DTF  can  be  performed  with  moderate
quantitative errors. The use of high resolution EEG recordings and the estimation of the cortical
waveforms  in  ROIs  via  the  solution  of  linear  inverse  problem allows  the  evaluation  of  the
functional cortical connectivity patterns related to the task performed. These computational tools
(high resolution EEG, estimation of cortical activity via linear inverse problem, SEM and DTF)
could be of interest to  assess time-varying functional  connectivity patterns from non invasive
EEG recordings in humans. Such procedures can be integrated by using the information coming
from the hemodynamic measurements (as fMRI), since it has been demonstrated as the inclusion



of the fMRI priors improve the estimation of the cortical source activity. Recently, evidences in
that sense have been presented in literature [Babiloni et al., 2005a,b].

In summary, we have reviewed here an integrated approach to estimate brain cortical activity and
connectivity  by  using  noninvasive  methodologies  involving  the  multimodal  integration  of
electrophysiological and hemodynamic measurements. These methodologies enable us to detect
the level of statistical significance of the estimated cortical activations in the selected ROIs, and
to follow the time-varying pattern of connectivity eventually developing during simple motor
tasks in humans. This body of methodologies is  suitable for the analysis of simple as well as
complex movements or cognitive tasks in humans.
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