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Abstract. A great challenge in neurophysiology is to asses non-invasively the physiological changes occurring in
different parts of the brain. These activation can be modeled and measured often as neuronal brain source signals that
indicate the function or malfunction of various physiological subsystems. To extract the relevant information for
diagnosis and therapy, expert knowledge is required not only in medicine and neuroscience but also statistical signal
processing. Besides classical signal analysis tools (such as adaptive supervised filtering, parametric or non-parametric
spectral estimation, time-frequency analysis, and higher-order statistics), new and emerging blind signal processing
(BSP) methods,  especially,  generalized component  analysis (GCA) including fusion (integration) of  independent
component  analysis  (ICA),  sparse  component  analysis  (SCA),  time-frequency component  analyzer  (TFCA) and
nonnegative matrix factorization (NMF) can be used for analyzing brain data, especially for noise reduction and
artefacts elimination, enhancement, detection and estimation of neuronal brain source signals. The recent trends in the
BSP is to consider problems in the framework of matrix factorization or more general signals decomposition with
probabilistic generative and tree structured graphical models and exploit a priori knowledge about true nature and
structure of latent (hidden) variables or brain sources such as spatio-temporal decorrelation, statistical independence,
sparseness, smoothness or lowest complexity in the sense e.g., of best linear predictability. The goal of BSP can be
considered as estimation of sources and parameters of a mixing system or more generally as finding a new reduced or
hierarchical and structured representation for the observed brain data that can be interpreted as physically meaningful
coding or blind source estimation. The key issue is to find such transformation or coding (linear or nonlinear) which
has true neurophysiological and neuroanatomical meaning and interpretation. In this paper, we briefly discuss how
some novel blind signal processing techniques such as blind source separation, blind source extraction and various
blind source separation and signal decomposition methods can be applied for analysis and processing EEG data. We
discuss also a promising application of BSP to early detection of Alzheimer disease (AD) using only EEG recordings.
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1. Introduction

The nervous systems of humans and animals must encode and process sensory information within the
context of noise and interference, and the signals which are encode (the images, sounds, smell, odors, etc.)
have very specific statistical properties. One of the challenging tasks is how to detect, enhance and localize
and classify superimposed and overlapping, multidimensional brain source signals corrupted by noise and
other interferences.  To understand human neurophysiology, we currently rely on several  types of  non-
invasive  neuroimaging  techniques.  These  techniques  include  electroencephalography  (EEG)  and
magnetoencephalography (MEG). In recent years, an increasing interest  has been observed in applying
high density array EEG/MEG systems with more than one hundreds channels to analyze patterns and
imaging  of  the  human  brain,  where  EEG/MEG have  desirable  property  of  excellent  time  resolution
[Babiloni et al., 2004, Makeig et al., 2004, Malmivuo and Plonsey, 1995]. This property combined with
other systems such as eye tracking, ECG (electrocardiography) and EMG (electromyography) systems
with relatively low cost of instrumentations makes it attractive for investigating the some higher cognitive
mechanisms in the brain or mental states (such as emotion, stress, attention, fatigue) and opens a unique
window to investigate the dynamics of human brain functions as they are able to follow changes in neural
activity  on  a  millisecond time-scale.  In  comparison,  the other  functional  imaging modalities  positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI) are limited in temporal
resolution  to  time  scales  on  the  order  of,  at  best,  one  second  by  physiological  and  signal-to-noise
considerations. Determining active regions of the brain, given EEG/MEG measurements on the scalp is an



important problem. A more accurate and reliable solution to such a problem can give information about
higher  brain  functions  and  patient-specific  cortical  activity.  However,  estimating  the  location  and
distribution of electric current sources within the brain from EEG/MEG recording is an ill-posed problem,
since there is  no unique solution and the solution does not depend continuously on the data.  The ill-
posedness of the problem and distortion of sensor signals by large noise sources makes finding a correct
solution a challenging analytic and computational problem [Babiloni et al., 2004, Cichocki and Amari,
2003].

1.1 Why Blind Sources Separation and Signal Decomposition ?

In order to understand the higher order functioning of the brain, it is necessary to develop new methods of
signal  processing  for  brain  data.  On  the  other  hand,  the  brain  itself  performs  excellent  information
processing, by using diversified representations of information. Hidden brain sources are extremely weak,
nonstationary signals and usually distorted by large noise, interference and on-going activity of the brain.
Moreover, they are mutually superimposed and often low-passed filtered by EEG/MEG recording systems
(see Fig. 1).

Figure 1.(a) Simplified dipolar model of noninvasive scalp EEG and MEG, (b) general model of blind
source separation and extraction of sources. Such models are exploited in non-invasive multi-sensor
recording of  brain  activity  using  EEG or MEG. It  is  assumed that  the scalp sensors (electrodes,
squids) picks up superposition neuronal brain sources and non brain sources related to movements of
eyes and muscles. Objective is to identify the individual signals coming from different areas of the
brain and localize them in 3D space.

2. Simple Linear Models

The mixing and filtering processes of the unknown input sources may have different mathematical  or
physical  models, depending on the specific applications [Hyvarinen et  al., 2001; Amari and Cichocki,
1998]. Most of linear BSS models in the simplest forms can be expressed algebraically as some specific



problems of matrix factorization: Given observation (often called sensor or data) matrix X perform the
matrix factorization:

X = HS + V (1)

where:

X = [ x(1), x(2), ..., x(N)] -- available sensor signals,
S = [ s(1), s(2), ..., s(N) ] -- unknown source signals,
V = [ v(1), v(2), ..., v(N) ] -- unknown noise,

V is matrix representing the additive noise (see Table 1).

Figure 2. Block diagrams illustrating linear blind source separation or blind identification problem:
(a) General schema (b) Detailed model. For the overcomplete problem (m < n) the separating matrix
W may not exist; in such cases we attempt to identify the mixing matrix H first and next to estimate
sources by exploiting some a priori knowledge such as sparseness, non-negativity, smoothness, spatio-
temporal decorrelation or statistical  independence of  unknown sources. In general,  the number of
sensors can be larger, equal to or less than the number of sources. The number of sources is unknown
and can change in time [Cichocki and Amari, 2003].

Alternatively, the process can be described in on-line form as (see Fig. 2)

x(k) = H s(k) + v(k),   k = 1, 2, ..., N (2)

Although some decompositions or matrix factorizations provide an exact reconstruction data (i.e., X  =
HS), we shall consider here decompositions which are approximate in nature. In fact, many problems in
signal  and  image  processing  can  be  expressed  in  such  terms  of  matrix  factorization.  Different  cost
functions and imposed constraints may lead to different types of matrix factorization (see Table 2).

Table 1. Basic variables and matrices used in BSS

Variable Description Dimension of matrix



S Unknown sources n x N

X Observations (sensor
signals) m x N (m >= n)

Y Estimated sources or
independent components n x N

H Unknown mixing matrix m x m or n x m

W Demixing (separating)
matrix m x n or n x n

G=WH Global (mixing-demixing)
matrix m x n or n x n

Often BSS is obtained by finding an n × m, full rank, linear transformation (separating) matrix W which is
pseudo-inverse to estimating mixing matrix A [Amari & Cichocki, 1998; Cichocki and Amari, 2003; Bell
and Sejnowski, 1995]. In other words the process or reconstruction of unknown sources can be described
as (see Fig. 2):

yj(k) = wjT x(k),   j = 1, 2, ..., N k = 1, 2, ..., N (3)

or in global matrix form

y(k) = Wx(k),   k = 1, 2, ..., N (4)

or in batch form

Y = W X (5)

where

Y = [ y(1), y(2), ..., y(N) ]

The system achieve successfully a blind source separation if the global matrix G=WH is a generalized
permutation matrix (i.e., a matrix with all zero but only one nonzero element in each row and each column.
For  statistical  independent  sources  this  means  that  a  generalized  covariance  matrix  Rfy(k)  =  E
{f(y(k))yT(k)} ,  where f(y) is  a nonlinear transformation (score function) depending on distribution of
sources is a diagonal matrix (after convergence) [Cichocki and Amari, 1998, 2003]. Most of the adaptive
algorithms for ICA have the following form [Fiori 2003, Hyvarinen et al. 2001]:

ΔW(k) = W(k + 1) - W(k) = μ(k)[ I - Rfy ]W(k)

where μ(k) is a learning rate.

Table 2. Basic Criteria of BSS

Criterion Cost Function



2.1 Models for Blind Source Separation for Noisy Signals

Often,  the  sensor  signals  are  corrupted  by  various  interference  and  noise  sources.  In  many practical
situations, we can measure or model the environmental noise. Such noise is termed reference noise (see
Figs.  3 and 4).  For example,  we can measure or  record  the environmental  noise by using an isolated
microphone.  In  a  similar  way,  noise  in  biomedical  applications  can  be  measured  by  suitably  placed
auxiliary sensors (or electrodes). The noise vR(k) may influence each sensor in some unknown manner due
to environmental effects; hence, such effects as delays, reverberations, nonlinear distortions etc. may occur.
It  may be assumed that  the reference noise is processed by  some unknown dynamical system before
reaching the sensors. In a simple case, a convolutive model of noise is assumed where the reference noise
is  processed  by  some  FIR  filters  (see  Fig.  4).  In  this  case,  two  learning  processes  are  performed
simultaneously:  An  un-supervised  learning  procedure  performing  blind  separation  and  a  supervised
learning  algorithm performing  noise  reduction  [Cichocki  and  Amari,  2003].  This  approach has  been
successfully applied to the elimination of noise under the assumption that the reference noise is available.
In  a  traditional  linear  Finite  Impulse  Response  (FIR)  adaptive  noise  cancellation  filter,  the  noise  is
estimated as a weighted sum of delayed samples of the reference interference. However, the linear adaptive
noise cancellation systems mentioned above may not achieve an acceptable level of cancellation of noise
in many real world situations when interference signals are related to the measured reference signals in a
complex  dynamic  and  nonlinear  way.  Efficient  interference  and  noise  cancellation  usually  require
nonlinear adaptive processing of the observed signals [Cichocki and Amari, 2003].

Figure 3. A simple model for noise cancellation in a single channel using a nonlinear adaptive filter
or  neural  network  in  the  case  when  reference  signal  corresponding  to  noise  of  interference  is
available.



Figure 4. Model for mixing process and blind sources separation when reference noise is available
(for  m  =  n).  The  adaptive  system  performs  noise  cancellation  and  simultaneous  blind  source
separation using minimization of energy of output signals and maximization of information.

2.2 State-Space Models

Models discussed above assume that source signals mixed linearly without any filtering or time delays.
However, in some application it is necessary to take into account filtering (e.g., in EGG low pass filtering
and smearing effect). Linear dynamical mixing and demixing-filtering systems can be described by state-
space models. In fact, any stable mixing dynamical system can be described as (see Fig. 5):

(6)

Analogously, we can assume that the demixing model is another linear state-space system described as

(7)



Figure 5. Conceptual state-space model illustrating general linear mixing and filtering process and
self-adaptive separating or decomposition process. The objective of learning algorithms is estimation
of a set of matrices [A;B;C;D;L] such that we reconstruct original sources.

It  is  easy  to  see  that  the  linear  state-space  model  is  an  extension  of  the  instantaneous  blind  source
separation model. In the special case when the matrices A;B;C in the mixing and demixing models are null
matrices, the problem is simplified to the standard memory-less BSS problem (see Fig. 2). In general, the
matrices [A;B;C;D;L] are parameters to be determined in a learning process on the basis of knowledge of
the sequence x(k) and some a priori knowledge about the recording system. We formulate the dynamical
blind separation problem as a task to recover original source signals from the observations x(k) without a
priori knowledge of the source signals or the state-space matrices [A;B;C;D], by assuming, for example,
that the sources are mutually independent, zero-mean signals. Generally, the set of matrices 

and A, B, C, D, L are unknown. The state-space description [Zhang and Cichocki, 2001, Cichocki and
Amari, 2003] allows us to divide the variables into two types: The internal state variable ζ (k), which
produces the dynamics of the system, and the external variables x(k) and y(k), which represent the input
and output of the demixing/filtering system, respectively. The vector ζ (k) is known as the state of the
dynamical system, which summarizes all the information about the past behavior of the system that is
needed to uniquely predict its future behavior. The linear state-space model plays a critical role in the
mathematical formulation of a dynamical system. It also allows us to realize the internal structure of the
system and to  define  the controllability  and observability  of  the system. The parameters  in  the state
equation of the separating/filtering system are referred to as internal representation parameters (or simply
internal parameters), and the parameters in the output equation as external ones. Such a partition enables us
to estimate the demixing model in two stages: Estimation of the internal dynamical representation and the
output (memoryless) demixing system. The first stage involves a batch or adaptive on-line estimation of
the state space and input parameters represented by the set of matrices A;B, such that the systems would be
stable and have possibly sparse and lowest dimensions.  The second stage involves fixing the internal
parameters and estimating the output (external) parameters represented by the set  of  matrices C;D  by
employing suitable batch or adaptive algorithms [see Cichocki and Amari, 2003 and Zhang and Cichocki,
2001]. It should be noted that for any feed-forward dynamical model, the internal parameters represented
by the set of matrices [A;B] are fixed and they can be explicitly determined on the basis of the assumed
model. In such a case, the problem is reduced to the estimation of external (output) parameters but the



dynamical (internal) part of the system can be established and fixed in advance. In fact, the separating
matrix W= [C;D] can be estimated by any learning algorithm for ICA or BSS. Usually we estimate or
identify these matrices in two-step procedure. In the first step are design matrices A and B to provide a
suitable filtering properties (typically high or band pass filtering) and ensure stability of the system. In the
next  step,  we  estimate output  matrices  C  and  D  on  basis  of  suitable  criteria  such  as  independence,
sparseness, smoothness spatio-temporal decorrelation.

3. Basic Principles and Approaches for Blind Signal Processing

Although  many  different  source  separation  and  multichannel  signal  decomposition  algorithms  are
available, their principles are generally speaking based on various criteria (See Table 2) and diversities of
signals,  typically,  time, frequency, (spectral  or  “time coherence”) and/or  time-frequency diversities,  or
more generally,  joint  space-time-frequency (STF) diversity (see Figs.  6,  7  and 13).  For  example time
frequency diversity leads to concept of Time-Frequency Component Analyzer (TFCA) [Belouchrani &
Amin, 1996, Cichocki and Amari, 2003]. TFCA decomposes the signal into specific components in the
time-frequency  domain  and  computes  the  time  frequency  representations  (TFRs)  of  the  individual
components. Usually components are interpreted here as localized, sparse and structured signals in the
time-frequency plain (spectrogram). In other words, in TFCA components are estimated by analyzing the
time-frequency distribution of the observed signals. TFCA provides an elegant and promising solution to
suppression of some artifacts and interference via masking and/or filtering of undesired - components.

Moreover, estimated components S or Y represent usually unknown source signals with specific statistical
properties or temporal structures. The matrices (see Eq. (1)) have usually clear statistical properties and
meanings. For example, the rows of the matrix S that represent estimated sources or components should be
as sparse as possible for sparse component analysis (SCA) or statistically mutually independent as possible
for  independent  component  analysis  (ICA).  Often  it  is  required  that  the  estimated  components  are
piecewise  smooth  for  smooth  component  analysis  (SmoCA)  or  take  only  nonnegative  values  for
nonnegative  matrix  factorization  (NMF)  or  values  with  specific  constraints  [Lee  and  Seung,  1999;
Cichocki and Georgiev, 2003].

More sophisticated or advanced approaches use combinations or integration of various criteria such as
independence,  sparsity,  smoothness,  decorrelation  and  principles  based  on  second  order  statistics,
nonstationarity,  higher order  statistics,  nongaussianity  etc.  in  order to separate  or  extract  sources  with
various statistical properties and to reduce the influence of noise and undesirable interference.

The all  above mentioned BSS methods  belongs  to  a  wide class  of  unsupervised  learning  algorithms.
Unsupervised learning techniques try to discover a structure underlying a data set, extraction of meaningful
features and finding useful representations of the given data [Li, Cichocki and Amari, 2002, 2003]. Since
data can be always interpreted in many different ways, some knowledge is needed to determine which
features or properties represent our true latent (hidden) components. For example, principal component
analysis (PCA) finds a low-dimensional representation of the data that captures most of its variance. On
the other hand, sparse component analysis (SCA) tries to explain data as mixture of sparse components
(usually  in time-frequency domain)  and NMF seeks  to  explain  data  by  parts-based  localized  additive
representations (with nonnegativity constraints).

BSS  algorithms,  e.g.,  ICA,  SCA,  NMF,  STD and  SmoCA,  techniques  are  often  considered  as  pure
mathematical formulas, powerful, but rather mechanical procedures: There is illusion that there are not
very much left for the user to do after the machinery has been optimally implemented. The successful and
efficient use of the such tools strongly depends on a priori knowledge, common sense and appropriate use
of  the  preprocessing  and  postprocessing  tools.  In  other  words,  it  is  preprocessing  of  data  and
postprocessing of models where an expertise is truly needed in order to extract reliable, significant and
physiologically  meaningful  components.  Typical  preprocessing  tools  include:  Principal  Component
Analysis  (PCA),  Factor  Analysis,  (FA),  model reduction,  whitening,  filtering,  Fast  Fourier  Transform
(FFT),  Time Frequency Representation  (TFR) and sparsification  (wavelets  package transformation)  of
data.  Postprocessing  tools  includes:  Deflation and reconstruction  (”cleaning”)  of  original  raw data  by
removing undesirable components, noise or artifacts. On the other hand, the assumed linear mixing models
must be valid at least approximately and original source signals should have specified statistical properties
[Cichocki & Amari, 2003; Amari & Cichocki, 1998; Cichocki, Amari, Siwek, Tanaka, & al., 2004)].



Figure  6.Illustration  of  exploiting  spectral  diversity  in  BSS.  Three  unknown  sources  and  their
available  mixture in time domain (horizontal axis represents time scaled in milliseconds)- top and
middle  plots;  corresponding  mixed  signal  spectrum  is  shown  the  bottom  plot.  The  sources  are
extracted by passing the mixed signal through three suitable designed band-pass filters (BPF) with
suitable frequency characteristics depicted in the bottom figure.

Summarizing, the problems of separating or  extracting the original  source waveforms from the sensor
array, without knowing the transmission channel characteristics and the sources can be expressed briefly as
a number of related BSS or blind signal decomposition problems such Independent Component Analysis
(ICA)  (and  its  extensions:  Topographic  ICA,  Multidimensional  ICA,  Kernel  ICA,  Tree-dependent
Component Analysis, Subband Decomposition -ICA), Sparse Component Analysis (SCA), Sparse PCA
(SPCA),  Non-negative  Matrix  Factorization  (NMF),  Smooth  Component  Analysis  (SmoCA),  Parallel
Factor  Analysis  (PARAFAC),  Time-Frequency Component  Analyzer  (TFCA) and Multichannel  Blind
Deconvolution (MBD) [Amari and Cichocki, 1998; Cichocki and Amari, 2003; Hyvarinen, Karhunen, and
Oja, 2001; Bach and Jordan, 2003; Lee and Seung, 1999; Li, Cichocki and Amari, 2003, Zhang, Cichocki,
and Amari, 2004; Choi, Cichocki, and Amari, 2002; Miwakeichi et al., 2004].



Figure  7.  Illustration  of  a  basic  principle  of  the  Time-Frequency  Component  Analyzer  (TFCA):
Exploiting timefrequency diversity in BSS. (a) Original unknown source signals and available mixed
signal (horizontal axis represents time scaled in milliseconds). (b) 3-D Time frequency representation
of the mixed signal. Due to nonoverlapping time-frequency signatures of the sources by masking and
synthesis (inverse transform), we are able to extract the desired sources.

4. Deflation and Filtering of Multidimensional Signals

After extracting the independent components or performing blind separation of signals (from the mixture),
we can examine the effects of discarding some of components by reconstructing the sensor signals from
the remaining components. This procedure is called deflation or reconstruction, and allows us to remove
unnecessary  (or  undesirable)  components that  are  hidden in  the mixture (superimposed or  overlapped
data). In other words, the deflation procedure allows us to extract and remove one or more components (or
estimated sources) from the mixture x(k).

The deflation procedure is carried out in two steps.

1. In the first step, the selected algorithm to estimate the demixing (separating or decomposition)
matrix W and then performs the decomposition of observations into components by y(k) = W x(k).

2. In the second step, the deflation algorithm eliminates one or more components from the vector
y(k) and then performs the back-propagation xr = W+ yr(k), where xr is a vector of reconstructed
sensor  signals,  W+  =  Hestim  is  a  generalized pseudo inverse matrix of  the estimated  demixing
matrix W, and yr(k) is the vector obtained from the vector y(k) after removal of all the undesirable
components (i.e., by replacing them with zeros). In the special case, when the number of sources is



equal to the number of sensors and the number of outputs, we can use the standard inverse matrix
W-1 instead of the pseudo-inverse W+.

In batch format, the reconstruction procedure can be written as

Xr = W+ Yr (8)

Xr = [ xr(1), xr(2), ..., xr(N) ] - reconstructed sensor signals,

Yr = [ yr(1), yr(2), ..., yr(N) ] - reduced (selected or filtered) independent components.

In  the  deflation  procedure,  we  can  eliminate  undesirable  components  by  discarding  more  than  one
component  by  choosing  specific  components  representing  for  example  noise,  artifacts  or  undesirable
interference (see Fig. 8).

Figure 8. Window illustrating the deflation procedure in ICALAB program. Left plot shows the IC's or
separated signals before deflation and the right plot  shows the reconstructed  sensor  signals  after
eliminating some undesirable components representing for example artifacts, interference or noise. In
this example, only signals y2 and y7 are back-projected, remaining components are ignored. To do
this, you need to open the Reconstruction procedure window by clicking on the DEFLATION button in
the main ICALAB window. The DEFLATION button becomes activated only after the estimation of the
demixing matrix W is completed using any of the built-in or user-defined algorithms [see ICALAB and
Cichocki and Amari, 2003].



Figure 9. Basic models for removing undesirable components like noise and artifacts and enhancing
multisensory (e.g., EEG/MEG) data: (a) Using expert decision and hard switches, (b) using auxiliary
linear or nonlinear adaptive filters to smooth the components and hard switches. (c) alternative more
sophisticated  approach  in  which  soft  decision  with  nonlinear  transformation  and  smoothing  are
implemented in order to extract significant sub-components (sources). Often the estimated components
are also normalized, ranked, ordered and clustered in order to identify significant and physiological
meaningful sources or artifacts.

The deflation (reconstruction) procedure is illustrated in Fig. 8 for ICALAB package [Cichocki et al 2002].
In this figure, almost all (from 10) components yi are reset to zero except the components y2 and y7 that
are projected back to sensor levels (as xr(k) = pinv(W) yr(k) = W+yr(k), where W+ (10x10) means pseudo-
inverse of demixing matrix W and
yr(k) = [ 0, y2(k), 0, 0, 0, 0, y7(k), 0, 0, 0 ]T). The results are shown on right-side plot in Fig. 8. In many
cases the estimated components must be at first filtered or smoothed in order to identify all significant



components.

In addition to the denoising and artifacts removal, BSS techniques can be used to decompose EEG/MEG
data into individual components, each representing a physiologically distinct process or brain source. The
main idea here is to apply localization and imaging methods to each of these components in turn. The
decomposition is usually based on the underlying assumption of sparsity and/or statistical independence
between the activation of different cell assemblies involved. Alternative criteria for the decomposition are
spatio-temporal decorrelation, temporal predictability or smoothness of components. The BSS or more
general  BSP  approaches  are  promising  methods  for  the  blind  extraction  of  useful  signals  from  the
EEG/MEG data. The EEG/MEG data can be first decomposed into useful signal and noise subspaces using
standard techniques PCA, SPCA or  Factor Analysis (FA) and standard filtering.  Next,  we apply  BSS
algorithms  to  decompose  the  observed  signals  (signal  subspace)  into  specific  components.  The  BSS
approaches enable us to project each component (localized “brain source”) onto an activation map at the
skull level. For each activation map, we can apply an EEG/MEG source localization procedure, looking
only for a single dipole (or brain source) per map. By localizing multiple sources independently, we can
dramatically reduce the computational complexity and increase the likelihood of efficiently converging to
the correct and reliable solution.

One of the biggest strength of BSS approach is that it offers a variety of powerful and efficient algorithms
that are able  to estimate various kinds of sources (sparse, independent, spatio-temporally decorrelated,
smooth  etc.).  Some  of  the  algorithms,  e.g.,  AMUSE or  TICA [Cichocki  & Amari,  2003;  Cruces  &
Cichocki, 2003; Choi, Cichocki, & Amari, 1998a], are able to automatically rank and order the component
according to their complexity or sparseness measures. Some algorithms are very robust in respect to noise
(e.g., SOBI or SONS) [Choi et al., 2002, 2002; Choi, Cichocki, & Amari, 1998b]. In some cases, it is
recommended to use algorithms in cascade (multiple) or parallel mode in order to extract components with
various  features  and statistical  properties  [Hyvarinen,  Karhunen and Oja,  2001,  Cichocki  and  Amari,
2003].

Figure  9.  Parallel  model  employing  fusion  strategy  of  BSS  algorithms  for  estimation  of
physiologically  meaningful  event-related  brain  sources.  The  reliability  of  estimated  sources  or
components should be analyzed by investigating the spread of the obtained components for many trials
and possibly many subjects. Usually, the useful and significant components correspond to small and
well  separated clusters  from the rest  of  components,  while  unreliable  components usually  do  not
belong to any cluster.

In real world scenario latent (hidden) components (e.g., brain sources) have various complex properties
and  features.  In  other  words,  true  unknown  sources  are  seldom  all  sparse  or  only  all  statistically
independent, or all spatio-temporally decorrelated. Thus, if we apply only one single technique like ICA or
SCA or STD we usually fail to extract all hidden components. We need rather to apply fusion strategy or
combination of several criteria and associated algorithms to extract all desired sources. We may apply here
two possible approaches. The most promising approach is a sequential blind extraction in which we extract
components  one  by  one  in  each  stage  applying  different  criterion.  (e.g.,  statistical  independence,



sparseness. smoothness etc). In this way, we can extract sequentially different components with various
properties. In alternative approach, after suitable preprocessing, we perform simultaneously (in parallel
way) several BSS methods (ICA, SCA, STD, TFCA). Next the estimated components are normalized,
ranked, clustered and compared to each other using some similarity measures (see Fig. 10). Furthermore,
the components are back projected to scalp level and brain sources are localized on basis of clusters of
subcomponents. In this way, on basis of a priori knowledge (e.g., information about external stimuli for
event related brain sources), we can identify components with some electrophysiological meaning and
specific localizations.

In summary, blind source separation and generalized component analysis (BSS/GCA) algorithms allows:

1. Extract and remove artifacts and noise from raw EEG/MEG data.

2. Recover neuronal brain sources activated in cortex (especially, in auditory, visual, somatosensory,
motoric and olfactory cortex).

3. Improve the signal-to-noise ratio (SNR) of evoked potentials (EP’s), especially AEP, VEP and
SEP.

4. Improve spatial resolution of EEG and reduce level of subjectivity involved in the brain source
localization.

5. Extract features and hidden brain patterns and classify them.

Applications of BSS show special promise in the areas of non-invasive human brain imaging techniques to
delineate  the  neural  processes  that  underlie  human  cognition  and  sensoro-motor  functions.  These
approaches  lead  to  interesting  and exciting  new ways  of  investigating  and analyzing  brain  data  and
develop new hypotheses how the neural assemblies communicate and process information. This is actually
an extensive and potentially promising research area. However, these techniques and methods still remain
to be validated at  least  experimentally to obtain full  gain of the presented approach. The fundamental
problems here are: What are the system’s real properties and how can we get information about them?
What is valuable information in the observed data and what is only noise or interference? How can the
observed (sensor) data be transformed into features characterizing the brain sources in a reasonable way?

5. Early Detection of Alzheimer Disease using Blind Signal Decomposition

Finding  electro-physiological  signal  or  neuroimaging  markers  of  different  diseases  and  psychiatric
disorders is generating increasing interest [Jeong, 2004; Petersen et al., 2001, Babiloni et al..Aug. 2004].
The prevalence of dementia, a clinical disorder associated with Alzheimer’s disease (AD) and other kind
of  dementia  such  vascular  dementia,  is  steadily  increasing.  Recent  advances  in  drug  treatment  for
dementia, particularly the acetylcholinesterase inhibitors for Alzheimer’s disease (AD), are most effective
in early stages which are difficult to accurately diagnosis. Therefore, accurate early diagnosis is needed to
ensure effective pharmacological interventions in dementia cases [Musha et  al.,  2002; Petersen, 2003].
Alzheimer disease (AD) is one of the most frequent dementia among the elderly population [Petersen,
2003;  Jeong,  2004;  DeKosky  &  Marek,  2003].  Recent  studies  have  demonstrated  that  AD  has  a
presymptomatic phase, likely lasting years, during which neuronal degeneration is occurring but clinical
symptoms are not clearly observable. This makes preclinical discrimination between people who will and
will not ultimately develop AD very important and critical for early treatment of the disease which could
prevent or at least slow down the onset of clinical manifestations of disease. A diagnostic method should
be  inexpensive  to  make  possible  screening  of  many  individuals  who  are  at  risk  of  developing  this
dangerous disease. The electroencephalogram (EEG) is one of the most promising candidates to become
such a method since it is  cheap, portable and noninvasive recording of EEG data  is relatively simple.
However,  while  quite  many  signal  processing  techniques  have  been  already  applied  for  revealing
pathological changes in EEG associated with AD (see [Jeong, 2004; Petersen, 2003; Cichocki et al., 2004],
for review), the EEG-based detection of AD at its most early stages is still not sufficiently reliable and
further  improvements  are  necessary.  Moreover,  the  efficiency of  early  detection  of  AD is  lower  for
standard EEG comparing to modern neuroimaging techniques (fMRI, PET, SPECT) and it is considered
only as an additional diagnostic tool [Wagner, 2000; DeKosky & Marek, 2003]. This is why a number of
more sophisticated or more advanced multistage data analysis approaches with optimization should be
applied for this problem. There is still some variety of unexplored and more advanced blind signal and



image processing methods to find more data oriented and, thus, better discriminating approaches and to our
best knowledge, no study till now investigated the application of BSS and ICA methods as preprocessing
tools in AD diagnosis [Cichocki et al, 2005].

Generally speaking, in our novel approach, we first decompose EEG data into suitable components (e.g.,
independent, sparse, smooth and/or spatio-temporal decorrelated), next we rank them according to some
measures (such as linear predictability/increasing complexity or sparseness) and then we project to the
scalp level only some significant very specific ranked components, possibly of physiological origin that
could be apparently the brain signal markers for dementia, and more specifically, for Alzheimer disease.
We believe that BSS/ICA are promising methods for discrimination dementia due the following reasons
(see Fig. 11):

1) First of all, ICA and BSS algorithms allow us to extract and eliminate various artifacts and high
frequency noise and interference.

2) Second, novel BSS algorithms, especially these with equivariant and nonholonomic properties
allow us to extract extremely weak brain sources [Cichocki et al., 1994; Cichocki & Amari, 2003],
probably corresponding to the brain sources located deep in the brain like, e.g., in the hippocampus.

Figure 11.  Conceptual processing block diagram of the proposed method; the main novelty lies in
suitable ordering of components and selection of only few significant AD markers (components) and
back-projecting (deflation) of these components on the scalp level. The components are selected via an
optimization procedure.

The one of the hallmark of EEG abnormalities in AD patients is a shift of the power spectrum to lower
frequencies. It is common consensus in literature that the earliest changes in the EEG abnormalities are
observed in increasing theta activity and decrease in beta activity, which are followed by a decrease of
alpha  activity  [Jeong,  2004;  Musha  et  al.,  2000].  Delta  activity  typically  increases  later  during  the
progression of the disease. This suggests that an increase of theta power and a decrease beta and alpha
powers are markers for the subsequent rate of a cognitive and functional decline in early and mild stage of
AD (see Fig. 12). However, these changes in early stage of AD can be very small, corrupted by noise, thus
detection  them is rather  very difficult  from raw EEG data.  Therefore,  we exploit  these properties  for
suitably filtered or enhanced data rather than for raw EEG data. This filtering is performed using BSS
techniques mentioned in the previous sections. The basic idea can be formulated as filtering based on
BSS/ICA via selection of most relevant or significant components and project them back to scalp level for
further processing. In strict sense, BSS/ICA means estimation of true (original) neuronal brain sources,
though exactly the same procedure can be used for separation of two or more subspaces of the signal
without  estimation  of  true  sources.  One  procedure  currently  becoming  popular  in  EEG  analysis  is
removing artifact-related  BSS components and back projection  of  components  originating from brain
[Jung et al., 2000; Vorobyov & Cichocki, 2002]. In this procedure, components of brain origin are not
required to be separated from each other exactly, because they are mixed again by back projection after
removing artifact-related components.  But by the similar procedure, we can filter the on going ”brain
noise” also in wider sense, improving the signal to noise ratio (SNR). In one of our simplest developed
procedure,  we  do  not  attempt  to  identify  individual  brain  sources  or  physiologically  meaningful
components but rather identify the whole group or cluster of significant for  AD components. In other



words, we divide the available  EEG data into two subspaces:  brain signal subspace and “brain noise”
subspace. Finding fundamental mechanism or principle for identification of significant and not significant
components is  critical  in  our  approach and,  in  general,  may require  extensive studies.  We attempt to
differentiate  clusters  or  subspaces  of  components  with  similar  properties  or  features.  In  this  simple
approach the estimation of  all  individual  components  corresponding to separate  and meaningful brain
sources is not required, unlike in other applications of BSS to EEG processing (including its most popular
variant, employing standard ICA)). The use of clusters of components could be especially beneficial when
the  data  from different  subjects  are  compared:  similarities  among individual  components  in  different
subjects are usually low, while subspaces formed by similar components are more likely to be sufficiently
consistent. Differentiation of subspaces with high and low amount of diagnostically useful information can
be made easier if components are separated and sorted according to some criteria which, at least to some
extent, correlate with the diagnostic value of components. For this reason we have applied AMUSE BSS
algorithm  which  provides  automatic  ordering  of  components  according  to  decreasing  variance  and
decreasing their linear predictability.

AMUSE [Tong et  al., 1991, 1993; Szupiluk and Cichocki, 2001; Cichocki and Amari, 2003] is a BSS
algorithm which arranges components not only in the order of decreasing variance (that is typical for the
use of singular value decomposition (SVD) which is implemented within the algorithm), but also in the
order of their decreased linear predictability. Low values for both characteristics can be specific for many
of EEG components related to high frequency artifacts, especially electromyographic signal (which cannot
be  sufficiently  removed by  usual  filtering  in  frequency domain.  Thus,  a  first  attempt  of  selection  of
diagnostically important components can be made by removing a range of components separated with
AMUSE (below referred to as "AMUSE components") with the lowest linear predictability. Automatic
sorting of components by this algorithm makes it possible to do this simply by removing components with
indices higher than some chosen value.

5.1 AMUSE Algorithm and its Properties

AMUSE algorithm belongs to the group of  second-order-statistics spatio-temporal decorrelation (SOS-
STD) BSS algorithms. It provides similar decomposition as the well known and popular SOBI algorithms
[Belouchrani et al., 1997; Tang et al. 2002]. AMUSE algorithm uses simple principles that the estimated
components  should  be  spatio-temporally  decorrelated  and  be  less  complex  (i.e.,  have  better  linear
predictability) than any mixture of those sources. The components are ordered according to decreasing
values of singular values of a time-delayed covariance matrix. As in PCA (Principal Component Analysis)
and unlike in many ICA algorithms, all components estimated by AMUSE are uniquely defined (i.e., any
run of algorithms on the same data will always produce the same components) and consistently ranked.

AMUSE algorithm can  be considered as two consecutive PCAs:  First,  PCA is applied to  input  data;
secondly, PCA (SVD) is applied to the time-delayed covariance matrix of the output of previous stage. In
the first step standard or robust prewhitening (sphering) is applied as a linear transformation z(t) = Qx(t),
where Q = Rx

1/2 of the standard covariance matrix Rx = E {x(t)xT(t)} and x(t) is a vector of observed data
for time instant t. Next, SVD is applied to a time-delayed covariance matrix of pre-whitened data: Rz = E
{z(t)zT-1(t)} = UΣVT, where Σ is a diagonal matrix with decreasing singular values and U, V are matrices
of eigenvectors. Then, an demixing (separating) matrix is estimated as

AMUSE algorithm is much faster than the vast majority of BSS algorithms (its processing speed is mainly
defined by the PCA processing within it) and is very easy to use, because no parameters are required. It is
implemented as a part of package "ICALAB for signal processing" [Cichocki et al., online] freely available
online and can be called also from current version of EEGLAB toolbox [Delorme and Makeig, 2004)
(which is freely available online at http://www.sccn.ucsd.edu/eeglab/) if both toolboxes are installed.

5.2 Preliminary Results

The main advantage of AMUSE over other BSS algorithms was highly reproducible components in respect
to their ranking or ordering and also across subjects belonging to the same of group of patients. This
allows us to identify significant components and optimize their number.



Figure 12. Relative power for raw EEG data with BSS preprocessing (AMUSE algorithm): (a) For
theta waves ( 4-8 Hz) and (b) for beta waves (13-22 Hz) The relative power: blue lines-  for AD
patients, red lines for early/mild stage of AD and green lines for normal age-matched control subjects
The extracted components for theta wave have higher magnitude of relative power for AD, while the
same components for beta waves have lower magnitude of relative power in comparison to the normal
subjects. The bars indicate standard deviation.

The  proposed  AMUSE  BSS algorithm performs  linear  decomposition  of  EEG signals  into  precisely
ordered spatio-temporal decorrelated components that have lowest possible complexity (in the sense of
best linear predictability) (Stone, 2001; Cichocki & Amari, 2003). In other words, in the frequency domain
the power spectra of components have possibly distinct shapes. We found by extensive experiments that
filtering and enhancement of EEG data is the best if we reject components with lowest variance and back
project only the first 5-7 components with best linear predictability and largest variance. Automatic sorting
of components by AMUSE algorithm makes it possible to perform this simply by removing components
with index higher than some chosen threshold (typically, 6 for 10-20 international EEG system). After
projecting the significant component to scalp level we perform a standard spectral analysis based on FFT
of ”filtered” EEG data  and apply linear discriminant analysis (LDA) [Cichocki et  al., 2004].  Relative
spectral powers were computed by dividing the power in six standard frequency bands: delta (1 - 4 Hz),
theta (4-8 Hz), alpha 1 (8-10 Hz), alpha 2 (10-13 Hz), beta 1 (13-18 Hz) and beta 2 (18-22 Hz) by the
power in 1-22 Hz band. To reduce the number of variables used for classification, we averaged band power
values over all 21 channels. We found that the filtering or enhancement method based on BSS AMUSE
approach  increase  differentiability  between  early  stage  AD  and  age-matched  control  and  improve
considerably  sensitivity  and  specificity  form  8% to  18%  (Cichocki  et  al.,  2004).  In  particular,  our
preliminary  computer  simulations  indicate  that  several  specific  spatio-temporal  decorrelated  of
components in the lower frequency range (theta waves 4-8 Hz) and also in the higher frequency range
(beta waves 13-22 Hz) have substantially different magnitudes of relative power for early and mild-stage
AD patients than for normal age-matched subjects. In fact, the components in the theta band have higher
magnitude of relative power for AD patients, while the components in the beta band have significantly
lower magnitude of the relative power in comparison to normal healthy age-matching subjects (see Fig.
12).

5.3 Discussion

There is obviously room for improvement and extension of the proposed method both in ranking and
selection of optimal (significant) components, apparatus and post-processing to perform classification task.
Especially,  we can apply variety of BSS methods. We actually investigating several  alternatives more
sophisticated and even more promising approaches,  in which we employ a  family  of BSS algorithms
(rather than one single AMUSE BSS algorithm) as explained in the previous section in order extract from
EEG  data  brain  sub-components  whose  time  courses  and  electrode  projections  corresponded  to
neurophysiologically and neuroanatomically meaningful activations of separate brain regions. We believe
that such approach enable us to isolate not only various noise and artifacts from neuronal signals but also
under favorable circumstances may estimate from raw EEG signals some physiologically and functionally
distinct neuronal brain sources. Some of them may represent local field activities of the human brain and
could  be  significant  markers  for  early  stage  of  AD.  To  confirm  these  hypotheses  we  need  more



experimental  and  simulation  works.  Nevertheless,  by  virtue  of  separating  various  neuronal  and
noise/artifacts sources, BSS techniques offer at least a way of improving the effective signal to noise ratio
(SNR) and enhance some brain patterns. Furthermore, instead standard linear discriminant analysis (LDA),
we can use neural networks or support vector machine (SVM) classifiers. We expect to obtain even better
discrimination and sensitivity if we apply these methods. Moreover, classification can be probably strongly
improved by supplementing the set of spectral power measures which we used with much different indices,
such as coherence or alpha dipolarity, a new index depending on prevalence local vs. distributed sources of
EEG alpha activity, which was shown to be very sensitive to mild AD [Musha et al., 2002].

Furthermore, we hope to obtain further insight by analyzing EEG/MEG data in the time-frequency domain
(see Fig. 13). In Fig. 13, we have plotted the time frequency distributions of two EEG channels within the
temporal, spectral and smooth spectral representations. Source (a) can not be distinguished from source (b)
by the smoothed periodogram (average of windowed Fourier transforms). However, the sources can be
distinguished by the time frequency representation (their smoothed spectra are similar). From Fig. 13, it is
worth  noting  that  each  source  component  can  be  decomposed  into  several  time  frequency  localized
components which we call generalized components. Each of these generalized components may have its
physiological meaning and interpretation. We expect that the statistical structure of the repartition of the
localized  time  frequency  components  carries  a  relevant  information  about  the  brain  functions  and
mulfunctions.

Figure 13. Time frequency diversity of EEG signals: Source (a) can not be distinguished from Source
(b) according to the smoothed spectrum (projection of the spectrogram). However, they have different
time frequency signatures. Spectrograms and averaged spectra for two subjects: (a) control and (b) in
early stage of AD.

Additional attractive but still open issue is that using the proposed BSS approach, we can not only detect
but also measure in consistent way the progression of AD and influence of medications. The proposed
method can be also potentially useful and effective tool for differential diagnosis of AD from other types
of  dementia,  and  possibly  for  diagnosis  of  other  diseases.  Particularly,  the  possibility  of  differential
diagnosis of AD from vascular dementia (VaD) will be very important. Other areas of EEG analysis can be
also possible field for the application of our preprocessing technique. For these purposes, more studies
would be needed to  asses the impact of  the available  and future blind  source separation methods  for
enhancement/filtering and extraction of the EEG/MEG, fMRI signals of interest.

6. Conclusion

In this paper we have discussed briefly several linear models for blind source separation and emerging
signal decomposition approaches in application to analysis and preprocessing of EEG and MEG data.
These techniques are  potentially useful not only for  noise reduction and artifacts removal, but also  in
source localization and improving spatial  resolution of EEG. Furthermore, we have discussed the BSS
approach for blind extraction from raw EEG data specific components in order to improve sensitivity and
specificity  of  early  detection  of  Alzheimer’s  disease.  The  basic  principle  is  to  order  and  cluster



automatically of the estimated components and next project back to the scalp level only the suitable group
of components which are significant electrophysiological markers of Alzheimer disease. The suboptimal
selection of indexes and the number of ordered components has been performed by extensive computer
simulation and optimization procedure.
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