




Statistical Analysis 

We used the mean absolute error in bpm  as the 

main performance measure to assess the quality of the RR 

estimation over all 20 s frames. In addition, we calculated 
the mean error in bmp (  to evaluate the systematic 

bias of the method. By calculating the mean absolute per-

centage error between the reference RR ( ) and the 

estimated RR ( ) over all  20 s frames we derived the 

accuracy in percent as given in Equation 1. 

 

 (1) 

 

Besides the RR estimation performance, we evaluated the 

monotonic relation of the surrogate respiratory signal and 

the respiratory reference using the Spearman rank correla-

tion coefficient  in the 20 s frames. Due to the strong phase 

dependency of , we furthermore analyzed a lag-adjusted 
version  for applications where signal phase is less im-

portant. To derive  we calculated the lag between the 

reference and surrogate respiratory signal using the maxi-

mum of their cross correlation. We then shifted the signals 

accordingly and truncated them to the same length. We 

then calculated Spearman rank correlation coefficient be-
tween these signals which yields . 

Results 

We first analyzed the seven individual features regarding 

their single RR estimation performance. The results are 

given in Table 2, sorted with the best performing feature at 

the top. Feature 5 (the pulse interval) outperforms all other 

single features with regard to MAE, correlation and accu-

racy. The lag-adjusted correlation exceeded 0.7. However, 

several features achieve a lower bias.  

 

Table 2: Single features sorted based on lowest MAE. 

Nr. MAEbpm MEbpm   Accuracy 

5  2.5±4.1 -2.2±4.3 0.31±0.24 0.70±0.18 84±23% 

7 3.5±4.0 -1.9±5.0 0.23±0.16 0.61±0.19 78±23% 

1 4.4±5.0 0.3±6.7 0.20±0.16 0.57±0.18 72±33% 

4 5.3±5.5 -0.3±7.7 0.22±0.17 0.56±0.18 64±39% 

6 5.8±4.4 -2.9±6.7 0.17±0.14 0.53±0.21 63±32% 

2 5.9±5.0 -1.8±7.6 0.22±0.18 0.54±0.14 62±34% 

3 5.8±5.2 -1.2±7.7 0.24±0.16 0.55±0.18 57±50% 

 

Using the proposed spectral fusion step, we analyzed the 

performance of all 127 possible feature combinations. The 

three best performing combinations are given in Table 4. 

The combination 1,5,7 (systolic amplitude, pulse interval, 

delta-t feature) achieve the best result in MAE; ME and ac-

curacy. Compared to the best single feature 5, the MAE as 

well as its standard deviation decreased about 0.8 bpm, the 

ME and its standard deviation about 0.9 bpm and the accu-

racy increased about 6 % while lowering the standard de-

viation by about the same value. The lag-adjusted correla-

tion did not change significantly. 

 

Table 4: Three best performing feature combinations. 

Nr. MAEbpm MEbpm   Accuracy 

1,5,7 1.7±3.3 -1.3±3.5 0.26±0.21 0.68±0.15 90±17% 

4,5,7 2.2±3.8 -1.9±4.0 0.29±0.21 0.67±0.16 87±20% 

5,7 2.2±3.9 -1.8±4.1 0.29±0.21 0.69±0.16 87±22% 

 

An excerpt of a single 20 s frame is given in Figure 3. In 

the upper graph, the filtered and normalized vIPG with its 

fiducial points is displayed. The regular and typical ple-

thysmographic form of the signal is clearly visible. In the 

central plot, the three single feature vectors 1,5 and 7 and 

their piecewise linear interpolation are given. On close in-

spection, the previously mentioned feature-dependent 

times of the beat-to-beat features are visible. The lower plot 

shows the reference PNT signal as well as the merged sur-

rogate respiratory signal with its expected phase shift. The 

effect of the different sampling points of the features within 

the individual beats is visible. 

 

Figure 3: Normalized waveforms of an example frame. 

Upper  vIPG with fiducial points.                         . 

Center  best performing feature vectors.                . 

Bottom  reference respiratory signal and estimation. 

 

In Figure 4 we analyze the RR estimation agreement of 

the best feature combination 1,5,7 with respect to the ref-

erence method using a Bland-Altman diagram. It becomes 

evident from the plot that about 10 % of the points could 

be regarded outliers. For the analysis however, we did not 

remove any outliers as the data was already selected using 

an automated signal quality estimator. The feature combi-

nation does exhibit a slight proportional bias towards the 

underestimation of lower RR values. Based on visual in-

spection, the deviation is independent of the absolute value. 

The negative bias of -1.3 bpm as well as the standard devi-

ation of 3.5 bpm is well explained by the outliers. 
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Figure 4: Bland-Altman diagram of the best combination. 

Summary 

Our aim was to evaluate the use of vascular impedance 

plethysmography (vIPG) in the peripherals to estimate the 

respiratory rate (RR). We evaluated 127 combinations of 

seven time-domain features to find suitable beat-to-beat 

features for a low-complexity and minimally obstructive 

RR estimation in a wearable scenario. As the vIPG signal 

morphology differs only slightly from PPG signals, we are 

using PPG respiratory rate estimation reports as reference. 

We proposed a lightweight spectral feature fusion using 

linear piecewise interpolation, averaging and FFT to esti-

mate the RR. We found the pulse interval to be the best 

performing single feature with an MAE of 2.5 bpm and an 

accuracy of 84%. The best performing feature combination 

was found to be the systolic amplitude, pulse interval and 

delta-t feature with an MAE of 1.7 bpm and an accuracy of 

90%. The lag-compensated correlation was not affected by 

the feature fusion and remained at about 0.7 for the best 

features and combinations. A slight proportional bias to-

wards the underestimation of lower RR values was found. 

Discussion 

The good performance of the pulse interval feature is most 

likely due to its close relation to the heart rate and the strong 

influence from the respiratory sinus arrhythmia. 

With respect to reported mean absolute RR estimation er-

rors from the PPG of 1.2 bpm to 10.5 bpm [10], the reported 

MAE of 1.7 bpm is comparable with the literature. Especially 

with regard to the lightweight computational approach, the use 

of the vIPG signal instead of a PPG signal and the relatively 

short frame length of 20 s, the results are promising. However, 

a direct comparison with the reported values is difficult due to 

the different sensors and data used. In addition, we had to re-

ject multiple ill-conditioned frames. 

Problems arose from the vastly reduced signal quality in 

movement and the relatively small signal amplitudes in the 

range of tens of milliohms. Even though low quality frames 

were rejected in the signal preprocessing, movement artifacts 

caused large outliers which in turn degraded the overall statis-

tics. Outliers can be reduced by introducing more rigorous ar-

tifact detection than currently implemented. Using guarded 

electrodes could further increase the signal quality. 

The surrogate respiratory signals pose a relatively high lag-

compensated rank correlation. They have thus a higher infor-

mational content than just the RR. If signal phase is not an 

issue, this additional information could be used for other pur-

poses, such as the classification of respiratory phases, apnea 

detection or even classifying pathological breathing. The 

frame-wise normalization currently limits the possibility for a 

quantitative assessment of flow or volume parameters. 

Conclusion 

We conclude that vascular impedance plethysmography 

is a suitable approach for respiratory rate estimation in 

minimally obtrusive scenarios. Fusing multiple features 

can increase the performance to values comparable to state-

of-the-art concepts in PPG RR estimation with relatively 

small computational effort. The surrogate respiratory sig-

nals contain additional information which could be used for 

more advanced analysis. Future work may focus on the in-

tegration using textile electrodes, algorithm refining and 

optimization for other scenarios such as offline processing 

with higher computational resources. 
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