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Abstract

The importance of reduced obtrusion when monitoring
bio-parameters is increasing. For acquiring the respiratory
rate comfortably at the peripherals, the reflectance photo-
plethysmogram has been proposed. In some cases, how-
ever, even highly integrated, optical measurements are too
bulky. Using textile integrated electrodes, for example in
socks or gloves, respiratory rate estimation in a low-com-
plexity and minimally obtrusive, wearable scenario might
be possible using impedance measurements. We propose
using the vascular impedance plethysmography combined
with computationally lightweight respiratory rate estima-
tion. Using time-domain beat-to-beat features followed by
a spectral feature fusion step we show the feasibility of this
concept. We identify suitable feature combinations from
seven time-domain features and achieve accuracies beyond
90% with a mean absolute error of 1.7+3.3 breaths per mi-
nute. The derived surrogate respiratory signals contain ad-
ditional information which could be used for more ad-
vanced analysis. We conclude that vascular impedance ple-
thysmography is a suitable approach for respiratory rate es-
timation in minimally obtrusive scenarios.

Introduction

Unobtrusive monitoring of bio-parameters is gaining im-
portance not only in home-care applications but also in the
clinical routine. In addition, the current wave of fitness
trackers, health apps and activity monitors show the
strongly increasing interest to be well informed about the
body’s status. In the scientific community, especially the
estimation of the respiratory rate (RR) has gained much at-
tention over the last years due to the increased interest in
sleep health. In most cases, the electrocardiogram (ECG),
photoplethysmogram (PPG) or a combination of both is
used to estimate respiratory waveforms and rates [1]. Re-
flective PPG sensors are widely used in modern fitness
trackers and we previously showed that ECG electrode dis-
tances as low as 24 mm can still be used to accurately esti-
mate respiratory signals [2]. However, there are cases
where these techniques are still too obtrusive. Especially in
the context of intense physical activity, circulation disor-
ders and mental illnesses, surface electrodes as used for
ECG or wristbands can be too bulky.

One solution are impedance plethysmographic signals de-
rived from the peripheral vascular system [3]. When com-
bined with fiber-based, textile electrodes [4], integrated for
example in socks or gloves, they result in a highly unobtru-
sive respiratory measurement situation.

In this work, we extend the use of the vascular impedance
plethysmography (vIPG) in the context of unobtrusive,
wearable monitors. We identify suitable, computationally
feasible beat-to-beat feature combinations for the RR esti-
mation and propose a feature fusion concept. With our
work we hope to lay the groundwork for less obstructive,
peripheral RR estimation in a wearable scenario.

Materials and Methods
vIPG Signals and Fiducial Points

Vascular impedance plethysmography signals are ob-
tained using a tetrapolar Ag/AgCl disposable electrode
configuration with a spacing of 10 cm on the left arm. The
resulting impedance changes, caused by the vascular blood
flow, are in the order of tens of milliohm and represent
changes in blood volume [5]. We used a measurement fre-
quency of 100 kHz with a current of 900 A.

Due to their plethysmographic nature, the morphology of
vIPG signals differs only slightly from the morphology of
PPG signals. Therefore, the fiducial points established in
PPG signal analysis also apply for vIPG signals. The three
points used throughout this paper, namely the onset, sys-
tolic peak and diastolic peak, are given in Figure 1 with
their respective amplitudes and positions in the pulse. The
baseline of a single pulse is defined in this paper as the first
degree polynomial interpolation between two consecutive
onsets.

For detection of the vIPG onsets, an open-source algo-
rithm for arterial blood pressure signals proposed by Zong
et al. was used [6]. The systolic peak is then defined as the
extremum between two consecutive onsets. The diastolic
peak is found by identifying the minimum of the second
derivate of the pulse following the systolic peak, thus the
point where the first derivate is closest to zero in a falling
slope [7].
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Figure 1: Fiducial points in the plethysmographic signal.
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Data Acquisition and Pre-Processing

We measured the vIPG in 10 healthy subjects (6 male, 4
female) aged 26.5 +/- 3.3 years with no prior medical rec-
ord. For a respiratory reference, pneumotachometer (PNT)
signals have been recorded simultaneously. To simulate a
short-load situation, a 12 minute long exercise with a four-
minute rest, followed by a one-minute load and a seven-
minute recovery period was performed using an ergometer.
All signals are recorded with 500 samples/s.

The recorded vIPG signal was low-pass filtered with a
cutoff frequency of 35 Hz. The baseline-wandering and
offset was removed by subtracting a 2000 point gliding
mean (GMF). Finally, a 60 point GMF was used to smooth
the vIPG signal. The respiratory signal was low-pass fil-
tered at 1 Hz and smoothed using a 150 point GMF.

After pre-processing, the vIPG signals are divided into
20s long signal frames. The quality of each frame is then
assessed using an automated procedure based on [8]. If the
quality is found to be too low, the frame is rejected.

Beat-to-Beat Features and Reference-Rate

In order to reduce the computational complexity in a low-
power embedded environment, we choose seven time-do-
main features to estimate the respiratory signal [9]. All fea-
tures as well as their positions within the pulse curve are
visualized in Figure 2.
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Figure 2: Features and their positions in the pulse curve:
left - time based, right - amplitude based.

Each individual pulse, defined as the curve between two
onsets, were analyzed separately. First, the pulse onsets of
a 20 s interval were found. Next, the individual pulse base-
line was removed by subtracting a linear term calculated
from the current and next pulse onsets. Then, the two re-
maining fiducial points were calculated. From the three fi-
ducial points, the seven time domain features given in Ta-
ble 1 are calculated for each pulse in the frame. In Table 1,
the name, symbol as well as the number for each feature is
given. The latter is used as an identifier throughout this pa-
per. In addition, the calculation of the feature values and
their positions within the current pulse n are defined.

Every feature was assigned a specific time within the
pulse, thus spreading the features over the pulse duration
as shown in Figure 2. By using specific, feature-dependent
times instead of a single position per pulse for all features,
a more even distribution of points over the pulse interval is
achieved. Thus, the temporal resolution of the estimation is
increased when multiple feature vectors are fused. All fea-
ture vectors were up-sampled to the original vIPG sample
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rate using computationally lightweight piecewise linear in-
terpolation and normalized using the z-score.

The reference RR is calculated from the PNT data by cal-
culating the frequency spectrum using an FFT algorithm.
The frequency of the absolute amplitude maximum in the
physiologically plausible range of 6 to 36 bpm is consid-
ered the reference rate.

Table 1: Time domain beat-to-beat features used.
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Feature Fusion and Selection

The feature extraction results in seven feature vectors.
The following feature fusion is based on three assumptions:

1. The respiratory frequency is contained in all
feature vectors with an unknown power.

2. Unwanted, interfering frequency compo-
nents are present which may exceed the
power of the respiratory frequency.

3. The unwanted, interfering frequency com-
ponents are weakly correlated amongst the
feature vectors.

Due to assumptions 1 and 2, extracting the RR by a single
feature can prove difficult. Following assumption 3, the
performance can be increased if the frequency spectra of
the feature vectors are averaged so that the weakly corre-
lated interferences are cancelled out. Due to the property of
linearity of the Fourier transform, the normalized signals
can be averaged in the time domain and a single FFT of the
average signal will suffice, which reduces the computa-
tional burden. The peak of the frequency spectrum in the
physiologically meaningful interval between 6 and 36 bpm
was used as the RR estimation.

In order to optimize the feature selection, we calculated
several statistical measures for each possible feature com-
bination and averaged over all 20 s frames. Using the mean
absolute error in bpm (MAE,,) as a performance meas-
ure, we ranked the 127 feature combinations to find the
combination best suited for the RR estimation.
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Statistical Analysis

We used the mean absolute error in bpm (MAE},,,) as the
main performance measure to assess the quality of the RR
estimation over all 20 s frames. In addition, we calculated
the mean error in bmp (M Ey,,, ) to evaluate the systematic
bias of the method. By calculating the mean absolute per-
centage error between the reference RR (RRy,;) and the
estimated RR (RRJ;;) over all n 20 s frames we derived the
accuracy in percent as given in Equation 1.
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Besides the RR estimation performance, we evaluated the
monotonic relation of the surrogate respiratory signal and
the respiratory reference using the Spearman rank correla-
tion coefficient r in the 20 s frames. Due to the strong phase
dependency of r, we furthermore analyzed a lag-adjusted
version 744; for applications where signal phase is less im-
portant. To derive 1,4; we calculated the lag between the
reference and surrogate respiratory signal using the maxi-
mum of their cross correlation. We then shifted the signals
accordingly and truncated them to the same length. We
then calculated Spearman rank correlation coefficient be-
tween these signals which yields 744;.

Results

We first analyzed the seven individual features regarding
their single RR estimation performance. The results are
given in Table 2, sorted with the best performing feature at
the top. Feature 5 (the pulse interval) outperforms all other
single features with regard to MAE, correlation and accu-
racy. The lag-adjusted correlation exceeded 0.7. However,
several features achieve a lower bias.

Table 2: Single features sorted based on lowest MAE.

Nr. MAEspm MEbpm r Tadj Accuracy
5  25+#4.1 -2.2443 0.31+0.24 0.70+£0.18  84+23%
7 35+4.0 -1.9+5.0 0.23+0.16 0.61+£0.19  78+23%
1 44450 0.3+6.7 0.20£0.16 0.57+0.18  72433%
4 5.345.5 -0.3%7.7 0.22+0.17 0.56+0.18  64+39%
6 58444 -29+46.7 0.17+0.14 0.53£0.21  63+32%
2 59450 -1.847.6 0.22+0.18 0.54+0.14  62+34%
3 58452 -1.247.7 0.24+0.16 0.55%0.18  57+50%

Using the proposed spectral fusion step, we analyzed the
performance of all 127 possible feature combinations. The
three best performing combinations are given in Table 4.
The combination 1,5,7 (systolic amplitude, pulse interval,
delta-t feature) achieve the best result in MAE; ME and ac-
curacy. Compared to the best single feature 5, the MAE as
well as its standard deviation decreased about 0.8 bpm, the

ME and its standard deviation about 0.9 bpm and the accu-
racy increased about 6 % while lowering the standard de-
viation by about the same value. The lag-adjusted correla-
tion did not change significantly.

Table 4: Three best performing feature combinations.

Nr. MAEvpm MEbpm r T adj Accuracy
1,5,7 1.743.3 -1.3+3.5 0.26x0.21 0.68+0.15 90+17%
4,57 22438 -1.944.0 0.29+0.21 0.67+0.16 87+20%
57 22439 -1.844.1 0.29+0.21 0.69+£0.16 87+22%

An excerpt of a single 20 s frame is given in Figure 3. In
the upper graph, the filtered and normalized vIPG with its
fiducial points is displayed. The regular and typical ple-
thysmographic form of the signal is clearly visible. In the
central plot, the three single feature vectors 1,5 and 7 and
their piecewise linear interpolation are given. On close in-
spection, the previously mentioned feature-dependent
times of the beat-to-beat features are visible. The lower plot
shows the reference PNT signal as well as the merged sur-
rogate respiratory signal with its expected phase shift. The
effect of the different sampling points of the features within
the individual beats is visible.
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Figure 3: Normalized waveforms of an example frame.
Upper — vIPG with fiducial points.
Center — best performing feature vectors.
Bottom — reference respiratory signal and estimation.

In Figure 4 we analyze the RR estimation agreement of
the best feature combination 1,5,7 with respect to the ref-
erence method using a Bland-Altman diagram. It becomes
evident from the plot that about 10 % of the points could
be regarded outliers. For the analysis however, we did not
remove any outliers as the data was already selected using
an automated signal quality estimator. The feature combi-
nation does exhibit a slight proportional bias towards the
underestimation of lower RR values. Based on visual in-
spection, the deviation is independent of the absolute value.
The negative bias of -1.3 bpm as well as the standard devi-
ation of 3.5 bpm is well explained by the outliers.
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Figure 4: Bland-Altman diagram of the best combination.

Summary

Our aim was to evaluate the use of vascular impedance
plethysmography (VIPG) in the peripherals to estimate the
respiratory rate (RR). We evaluated 127 combinations of
seven time-domain features to find suitable beat-to-beat
features for a low-complexity and minimally obstructive
RR estimation in a wearable scenario. As the vIPG signal
morphology differs only slightly from PPG signals, we are
using PPG respiratory rate estimation reports as reference.

We proposed a lightweight spectral feature fusion using
linear piecewise interpolation, averaging and FFT to esti-
mate the RR. We found the pulse interval to be the best
performing single feature with an MAE of 2.5 bpm and an
accuracy of 84%. The best performing feature combination
was found to be the systolic amplitude, pulse interval and
delta-t feature with an MAE of 1.7 bpm and an accuracy of
90%. The lag-compensated correlation was not affected by
the feature fusion and remained at about 0.7 for the best
features and combinations. A slight proportional bias to-
wards the underestimation of lower RR values was found.

Discussion

The good performance of the pulse interval feature is most
likely due to its close relation to the heart rate and the strong
influence from the respiratory sinus arrhythmia.

With respect to reported mean absolute RR estimation er-
rors from the PPG of 1.2 bpm to 10.5 bpm [10], the reported
MAE of 1.7 bpm is comparable with the literature. Especially
with regard to the lightweight computational approach, the use
of the VIPG signal instead of a PPG signal and the relatively
short frame length of 20 s, the results are promising. However,
a direct comparison with the reported values is difficult due to
the different sensors and data used. In addition, we had to re-
ject multiple ill-conditioned frames.

Problems arose from the vastly reduced signal quality in
movement and the relatively small signal amplitudes in the
range of tens of milliohms. Even though low quality frames
were rejected in the signal preprocessing, movement artifacts
caused large outliers which in turn degraded the overall statis-
tics. Outliers can be reduced by introducing more rigorous ar-
tifact detection than currently implemented. Using guarded
electrodes could further increase the signal quality.
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The surrogate respiratory signals pose a relatively high lag-
compensated rank correlation. They have thus a higher infor-
mational content than just the RR. If signal phase is not an
issue, this additional information could be used for other pur-
poses, such as the classification of respiratory phases, apnea
detection or even classifying pathological breathing. The
frame-wise normalization currently limits the possibility for a
quantitative assessment of flow or volume parameters.

Conclusion

We conclude that vascular impedance plethysmography
is a suitable approach for respiratory rate estimation in
minimally obtrusive scenarios. Fusing multiple features
can increase the performance to values comparable to state-
of-the-art concepts in PPG RR estimation with relatively
small computational effort. The surrogate respiratory sig-
nals contain additional information which could be used for
more advanced analysis. Future work may focus on the in-
tegration using textile electrodes, algorithm refining and
optimization for other scenarios such as offline processing
with higher computational resources.
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