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Abstract.  We  investigated  the  computational  performance  of  myocardial  activation  time imaging
applying different ECG and MCG mapping systems. The numerical experiments presented were based
on synthetic ECG and MCG mapping data. The activation time map on the endocardium as well as on
the epicardium was reconstructed applying two different methods:  a  linearized iterative algorithm
considering the nonlinear characteristic of the inverse ECG and MCG problem, and an optimization
method with a regularization technique which is usually used in estimating the activation time map.
Considering comparable setups for ECG and MCG mapping systems (i.e., similar effective rank of the
mapping data matrix, similar signal-to-noise ratio, same quality of the coupling of anatomical and
mapping data) we found that the reconstruction from ECG and MCG mapping data results in nearly
the  same inverse  solution.  MCG mapping  systems  with  a  smaller  observation  space show lower
effective ranks and thus resulting in a less quality of the activation time map.
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Introduction
The purpose of this paper is to investigate the computational performance for myocardial
activation  time  imaging  applying  different  electrocardiographic  (ECG)  and
magnetocardiographic  (MCG)  mapping  systems.  Based  on  the  bidomain  model  [1],
myocardial  activation  time  imaging  from  ECG  and  MCG  mapping  data  is  an  inverse
nonlinear ill  posed problem. The primary electrical  sources in the cardiac muscle are the
spatio-temporal transmembrane potential distribution φm.  Identifying diagnostically useful
parameters such as the activation time τ, which describes the onset of φm, non linearity enters
the problem, because of the nonlinear behavior between τ and φm (see  Figure 1). Thus a
linearized iterative algorithm [2] which considers the nonlinear characteristic was used in
estimating  the  activation  time  map.  Additionally,  an  optimization  method  with  a
regularization scheme usually used in inverse electro- and magnetocardiography was also



applied [3]. The numerical experiments presented were based on synthetic ECG and MCG
mapping data for normal cardiac depolarization of the human ventricle.

Figure 1. The nonlinear ill posed electro- and magnetocardiographic inverse problem

Methods
A 43-year old male without structural heart disease underwent an electrophysiological study
for paroxysmal atrial fibrillation. From this patient the 62-channel ECG map and the torso
anatomy ((cine)  MRI)  was  recorded at  the  University  of  California  San  Francisco,  San
Francisco, California, USA. The ECG mapping system (Amsterdam, The Netherlands) was
an on-line portable dual-computer acquisition and analysis system with data transmission by
optical fiber. A radiotransparent carbon electrode array was used to record unipolar ECG data
from 62 torso sites - 41 electrodes on the anterior and 21 on the posterior chest - relative to
the Wilson's terminal as a reference. The torso was imaged with a 1.5 Tesla MR scanner
(Signa?,  General  Electrics).  From the  torso 40 axial  and  10  coronal  cross-sections  were
recorded with a slice thickness of 10 mm. Additionally, for modeling the surface of the heart
the cardiac muscle was imaged in an ECG-gated (cine) breath-hold oblique imaging mode
with 7 mm slice thickness and seven phases during the cardiac cycle with a phase delay of 35
ms. Vitamin E markers were used to determine the electrode positions from the axial MR
scans. Additional markers were positioned on the sternum, xiphoid and on the left and right
rib cage. A subset of these markers was used to couple the MR and ECG data. The actual
coordinate  system  for  the  inverse  formulation  was  equivalent  with  the  MR  machine
coordinate system. A BEM with linear triangular elements including the heart, the lungs and
the chest surface was the basis for modeling the patient's volume conductor (see Figure 2)
[4]. The following conductivities of the torso compartments were used: 0.2 S/m (torso), 0.05
S/m (lungs). The entire volume conductor was meshed by 2168 BEs. The entire surface of
the ventricle  (es) was modeled with 1074 BEs (539 nodal points). The mesh of  the sub
surfaces (endocardium of the left ventricle (le) and of the right ventricle (re) and epicardium
(ep)) consisted of 177, 152 and 210 nodal points. The cardiac geometry was collected during
the end diastolic phase.

Different ECG and MCG mapping systems were used in  the inverse problem. The ECG
mapping systems (A) consisted of 62 (anterior and posterior) electrodes. Two synthetic 62
channel MCG mapping systems with coil positions close (20 mm (B) and 70 mm (C)) to the
62 electrode positions of (A) were created. As a combination of system (B) and (C), also a
synthetic MCG mapping system (D) with 62 gradiometers with a baseline of 50 mm was
designed. Furthermore, different MCG mapping systems with 37 (E) and 67 (F) channels



were investigated (see Figure 2).

Figure 2. Boundary element torso model from an cranial (left panel) and a left lateral
(right panel) view. The circles indicate the positions of  the 62 electrodes of the ECG
mapping system. The MCG mapping systems with 37 and 67 channels are indicated by
plus signs and crosses, respectively.

Two  different  methods  were  used  for  myocardial  activation  time  imaging:  a  linearized
iterative algorithm [2] termed with method A and a conventional approach [3] (method B)
usually used in inverse ECG and MCG problems.

Method A

The non linear inverse ill posed problem
Ft = D (1)

in which F  is a nonlinear operator mapping the activation time t onto the ECG or MCG
mapping  data  D can be  solved  by  an  iterative  method [2].  This  method  is  based  on  a
regularization scheme, which extents the regularization method - Tikhonov's approach of
second order  -  from the linear  to  the nonlinear  case.  For  growing k-values  the iteration
method

tk+1 = tk + dtk (2)

with the descent direction dtk

    dtk = ( FTk Fk + lk2DTD )-1 [ FTk (D - Ftk) - lk2DTDtk]

converges to a regularized approximation of the activation time pattern. Fk represents  the
Frechet derivative of F.

Method B

Method B consists of an optimization routine and a regularization technique which is usually
used in estimating the activation time map. The functional which has to be minimized is
given by

|| Ljm - D ||2 + l2  || Dt ||2 = min (3)

L  stands for  the lead field,  which  describes the relationship  between the transmembrane
potential jm and the ECG or MCG mapping data D. The minimizing in (3) can be done by an



optimization routine, e.g., the Newton-type algorithm E04UCF in the NAG library (NAG
Ltd. UK). E04UCF is designed to solve nonlinear programming problems and minimizing of
smooth nonlinear functions subject to a set of constraints on the variables.

In both methods, a second order Tikhonov regularization approach with the surface laplacian
operator is applied to stabilize the inverse solution in the face of measurement noise and
errors  in  modeling  the patient's  geometry.  D  represents  an  approximation  of  the  surface
Laplacian on the surface of the ventricle [5]. The regularization parameter l specifies  the
relative weight between the residual norm and the smoothing norm. The determination of l in
(2) as well in (3)  is based on the L-curve method [6]. This method involves a parametric log-
log scale  plot  of  the  smoothing  norm on the ordinate  against  the residual norm on the
abscissa, with l as parameter. The corner of the characteristic L-shaped curve, the point of
maximum curvature, reflects the proper l.

A reference activation time map shown in Figure 3 was estimated from single-beat ECG
recordings. This activation time map, which is in accordance with the activation time pattern
of the sinus rhythm in humans, was used to simulate synthetic ECG and MCG mapping data.
Gaussian noise was added to these synthetic mapping data with a signal-to-noise ratio of
50dB in order to take into account the unavoidable noise, which occurs in real recordings.
The activation time map on the endo- and epicardium is estimated applying method A and B.
In both cases a high-quality starting activation time map is required to achieve satisfying
results. This starting vector is calculated applying the critical point theorem [3].

Figure 3. Reference activation time map t [ms] on the epicardium (top panels) and on
the  endocardium (bottom  panels).  Left  panels  show an  anterior  and  right  panels  a
posterior view. Isochrones are shown at steps of 5 ms.



Results
Firstly, the two different methods for noninvasive myocardial activation time imaging were
investigated estimating the activation time map from synthetic ECG mapping data applying a
62-channel ECG setup. The effective rank of the data matrix was found to be 21. The relative
root mean square error relRMS and the correlation coefficient CC of the activation time maps
on the entire surface (es), on the left endocardium (le), on the right endocardium (re) and on
the epicardium (ep) are summarized in  Table 1. These maps were estimated using the critical
point theorem, method A (iterative algorithm) with two different numbers of iteration, and
method B (optimization method). The optimization routine E04UCF took 169 iteration steps
for  finding  a  stable  inverse  solution.  The  L-curve  applying  method  B  as  well  as  the
individual L-curves of method A at iteration step 1, 5, 10 and 15 are depicted in Figure 4. As
can be seen in Table 1 both methods result in nearly the same inverse solution. Using the 62
channel MCG setups (B) and (D), similar results were obtained. The effective rank of the
data matrix was found to be 20 and 19, respectively. The results are summarized in Table 2
and Table 4. The MCG mapping setups (C), (E) and (F) showed a lower effective rank of 16,
9 and 14. Thus, the relRMS of these activation time maps estimated applying method A are
higher  than  the  relRMS  of  the  activation  time  maps  estimated  using  (A),  (B),  or  (D).
Applying method B better results were obtained. The relRMS and the CC of  the inverse
solutions using MCG setup (C), (E), and (F) can be found in Table 3, Table 5, and Table 6.

Figure 4. L-curve plots at iteration step k = 1, 5, 10 and 15 applying method A and
L-curve  plot  applying  method  B (747 iterations).  The short  solid  line  indicates  the
regularization  parameter  corresponding  with  the  point  of  maximal  curvature  of  the
individual L-curve.



TABLE 1. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (A).  The
number in brackets indicates the number of iterations.

setup A
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 22.07 31.37 28.56 11.64 0.7448 0.6054 0.9165 0.9324

method A (10) 3.69 5.56 4.80 1.47 0.9920 0.9949 0.9946 0.9976

method A (15) 0.86 0.76 1.18 0.76 0.9996 0.9996 0.9992 0.9993

method B (169) 0.19 0.26 0.24 0.13 1.0 1.0 1.0 1.0

TABLE 2. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (B).  The
number in brackets indicates the number of iterations.

setup B
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 23.43 36.50 28.02 9.63 0.7447 0.6146 0.9108 0.9289

method A (10) 7.52 10.05 11.50 3.03 0.9659 0.9763 0.9734 0.9900

method A (15) 2.14 1.72 2.88 2.01 0.9974 0.9981 0.9972 0.9955

method B (231) 0.65 0.39 0.29 0.82 0.9998 0.9999 1.0 0.9992



TABLE 3. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (C).  The
number in brackets indicates the number of iterations.

setup C
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 24.01 36.24 30.39 10.16 0.7203 0.6318 0.8335 0.9242

method A (10) 19.92 35.44 16.44 5.46 0.7819 0.8398 0.9542 0.9651

method A (15) 3.52 36.33 17.09 6.06 0.7644 0.7684 0.9531 0.9556

method B (233) 1.62 2.11 1.93 1.16 0.9985 0.9970 0.9978 0.9984

TABLE 4. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (D).  The
number in brackets indicates the number of iterations.

setup D
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 23.56 36.41 28.27 10.06 0.7222 0.5703 0.8840 0.9283

method A (10) 11.03 17.93 12.73 3.51 0.9268 0.9537 0.9679 0.9861

method A (15) 2.39 2.71 3.22 1.82 0.8966 0.9965 0.9970 0.9963

method B (175) 0.64 0.66 0.35 0.70 0.9998 0.9997 0.9999 0.9994



TABLE 5. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (E).  The
number in brackets indicates the number of iterations.

setup E
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 24.50 29.54 29.36 19.46 0.5542 0.3384 0.6954 0.6919

method A (10) 19.06 30.08 9.77 14.06 0.7601 0.7451 0.9748 0.7958

method A (15) 17.56 26.10 10.90 14.01 0.7987 0.8382 0.9678 0.8005

method B (878) 9.67 9.05 5.39 11.02 0.9609 0.9770 0.9876 0.8005

TABLE 6. The relative root mean square error relRMS and the correlation coefficient CC of
the activation  time  maps  on  the entire  surface  (es),  the left  endocardium (le),  the  right
endocardium  (re)  and  the  epicardium  (ep)  estimated  applying  mapping  setup  (F).  The
number in brackets indicates the number of iterations.

setup F
relRMS [%] CC

es le re ep es le re ep

critical point
theorem 22.98 30.50 29.13 14.98 0.6877 0.4625 0.8042 0.8382

method A (10) 12.97 18.60 17.40 6.03 0.8980 0.9050 0.9512 0.9602

method A (15) 9.87 14.75 11.96 4.93 0.9419 0.9192 0.9775 9.9731

method B (747) 2.63 1.69 1.78 3.19 0.9960 0.9991 0.9981 0.9878

Conclusions
An activation time map reconstructed from measured 62-channel ECG mapping data, which
is in accordance with the activation time pattern of the sinus rhythm in humans, was used as
a reference shown in Figure 3. The effective rank of the data matrix was found to be 20. In
order to get a similar effective rank from synthetic ECG and MCG mapping data, Gaussian



noise with a  signal-to-noise ratio  of  50dB was added.  As can be seen  in   Figure 5,  the
singular  values  of  the  lead  field  matrix  of  the  ECG mapping  setup  (A)  and  the  MCG
mapping setups (B) and (D) similarly decrease, which results in a similar effective rank of
the mapping data matrix. A high-quality inverse solution was found even after 15 iterations
applying method A. Using the mapping setups (A), (B) and (D), about 200 iterations were
needed to achieve the final solution applying method B. The reconstruction from ECG and
MCG mapping data  results  in  nearly  the  same  inverse  solution,  because  of  the  similar
effective rank of the mapping data matrix.

A larger distance between the MCG sensors and the primary sources as is the case in (C),
results in a faster decrease of the singular values (see Figure 5) and thus in an effective rank
of 16. As can be seen in Figure 2 the MCG setup (E) and (F) have a smaller observation
space, which results in some sense in a higher spatial dependency on the individual sensors.
Thus, the effective rank of the data matrix was further reduced to 14 (setup (F)) and 9 (setup
(E)), respectively. The solution of the critical point theorem showed less quality. Because of
the less-quality of the starting vector, the quality of the activation time pattern estimated
applying method A could not be adequately improved after 15 iterations. Using MCG setup
(F),  more  than  700  iterations  in  method  B  were  necessary  to  achieve  a  useful  inverse
solution. Applying (E) the effective rank was too low resulting in a starting vector, which
could not be further improved even using method B with more than 800 iterations.

We  can  conclude  that  in  contrast  to  mapping  systems  with  sensors  rather  uniformly
distributed over the chest surface, the MCG mapping systems (E, F) show lower effective
ranks and thus resulting in a less quality of the activation time map.

Figure 5. Normalized singular values of  the lead field matrix for different ECG and
MCG setups.
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