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Abstract.  Mapping of  electrical endocardial activity is an important task for cardiac diagnosis and
surgical treatment planning. Different kinds of catheters measure this activity with a limited number of
electrodes.  In recent  years  an  increasing  number of  mapping systems  is  used in clinical  routine.
Various systems have been introduced and discussed in literature.

This work deals with the localization of catheter electrodes in the heart with advanced techniques of
digital image processing. The catheters - developed by various enterprises - differ in shape, handling
and  amount  of  electrodes.  They  are  specified  and  presented  in  detail.  Digital  image  analysis
techniques like filters, Fourier and Hough transformation build the background and basics for  this
work. The main part describes the methods for the detection of the electrodes and the catheter strings.
With these methods, it is possible to setup computer models for each catheter. The computer models
can be used e. g. in numerical field calculation together with medical tomographic datasets.
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Introduction
Medical  examinations  of  electrical  cardiac  activity  are  necessary  in  the  field  of  cardiac
diagnosis  and  surgical  treatment  planning.  An  important  examination  is  mapping  the
endocardial electrical potentials. This kind of measurement involves catheters with a limited
number of electrodes. In recent years an increasing number of mapping systems is used in
clinical routine. Various systems have been introduced and discussed in literature [1, 2, 3, 4,
5]. These systems have local coordinate or reference systems, such as the catheter itself or
landmarks in the heart.

This work introduces different digital image processing methods to localize three types of
catheters differing in shape, handling and amount of electrodes. The first category covers one
string catheters. They have up to n electrodes in a row. Secondly, methods to localize basket
catheters  are  presented.  These catheters  include  eight  strings  with  a  total  amount  of  64
electrodes. Each string contains eight electrodes. One string has an additional marker and



another  string  has  two  additional  markers.  The  third  category  describes  techniques  to
determine the position of balloon catheters with 64 electrodes placed on a grid. Two other
electrodes are fixed on the catheter which the grid is attached to. A balloon inside the grid
can be filled  with a radiopaque fluid or - here - NaCl to expand the grid.  The different
catheters are specified and presented in detail.

The mathematical background for the digital image analysis embraces the Hough and Fourier
transformation, as well  as the Hessian matrix,  filters and active contours. These methods
make  it  possible  to  extract  the  electrode  positions  of  the  catheters.  The  images  of  the
catheters come from two modalities: x-ray and computed tomography (CT). Combining the
different  methods,  it  is  feasible  to  generate  three  dimensional  computer  models  of  the
catheters and the electrodes. The results are presented and discussed.

For  imaging  bioelectrical  sources,  the  mapping  methods  combined  with  additional
measurements lead to e. g. endocardial maps or Body Surface Potential Maps (BSPM) and
therefore make it possible to gain more information about the activity. Also, the generated
computer  models  of  the catheters  can  be used  with  other  models  like a  volume  dataset
generated from medical tomographic images. This leads to a hybrid dataset for further field
calculations and data analysis. Examples for these kind of measurements are the inverse and
the forward problem of electrocardiography.

Catheters
The catheter description covers information like the design and technical specifications.

Figure 1. One string catheters. Left: Photographic image of a string catheter with four
electrodes. Middle: X-ray image of the catheter shown on the left. Right: Photographic
image of a string catheter with 20 electrodes.

Figure 1 shows two examples of one string catheters with four and 20 electrodes. The left
catheter  has  a  shaft  diameter  of  6F  [1.4224  mm/0.056  inch]  (F  =  French).  The
LiveWire  catheter  on  the  right  side  has  been  developed  by  the  Daig  Corporation,
Minnetonka,  USA. It  has a  shaft  diameter of 7F [1.6764 mm/0.066 inch] and a  steering
mechanism to provide catheter tip movement. It has a variety of lengths and tip deflection
styles.
The  multielectrode  basket  catheter  (Constellation)  as  introduced  by  Boston  Scientific,
Massachusetts, USA, is shown in figure 2.



Figure 2. Multielectrode basket catheter. The catheter includes eight strings with a total
amount  of  64  electrodes:  Each  string  contains  eight  electrodes.  One  string  has  an
additional marker and a second string has two additional markers. Left: Photographic
image. The arrows mark the eight electrodes on one string. Right: X-ray image of the
catheter.

The Constellation mapping catheter is in direct contact with the endocardial tissue. It has a
basket-shaped design and multiple electrodes. A electrical map of the endocardial atrium can
be obtained in several beats of the heart. The Constellation system permits the diagnosis of
arrhythmias, such as rapid heartbeats that develop after surgical procedures, and other atrial
tachycardias [6]. The specifications are given in Table 1.

The EnSite  balloon catheter  has been  developed by  Endocardial  Solutions, Inc, St.  Paul,
USA (Fig. 3).

Figure 3. Multielectrode balloon catheter. 64 Electrodes are placed on the grid and three
electrods  are  fixed  on  the  string:  Two  to  find  defect  electrodes  and  one  reference
electrode. A ballon inside the grid can be filled with a fluid to expand the grid. In this
image a small metal plate is attached to the grid for localization reasons.

The EnSite catheter is a non-contact, single-use, multi-electrode array, percutaneous catheter.
The multi-electrode array senses electrical activity generated from the endocardial wall while
floating in the cavity.  The array area is comprised of  an  inflatable  polyurethane balloon
within an expandable multi-electrode grid. The multi-electrode array contains a wire braid
consisting of 64 braided insulated wires. A handle and cable connector are located at the
proximal end of the catheter to allow the user to position the distal end of the catheter. The
EnSite catheter is inserted intravasculary over a standard guidewire into a selected chamber
of the heart. When positioned, the wire braid is expanded and the balloon residing under the
wire braid in the array area of the catheter is  inflated with a fluid to form an ellipsoidal,
multi-electrode  array.  When  deployed,  the  array  is  small  enough  to  permit  the  normal
functioning of the heart [7]. The technical details are shown in table 1.



TABLE 1. Specifications of the basket and the balloon catheter.

Constellation EnSite
Shaft 8 French Shaft 9 French with J-tip
Length 120 cm Length 110 cm
Electrodes 64 (8 per spline) Electrodes 64
Basket diameter 38/48/60/75/94 mm
Splines 8

Lumen Size 0.038 inch diameter
Balloon 1.8 x 4.5 cm, 7.5 ml

Digital Image Analysis
This section gives the mathematical background to the digital image processing methods and
basics.  Different  transformations,  filters  and  methods  explain  how to  extract  the needed
information from the images. The interesting information is the histogram, edge, line and
shape.

Homogenous Transformation and Coordinates

Adding a fourth component to a three dimensional vector leads to the so called homogenous
coordinates (Fig. 4). In general, the fourth component is defined as a constant k with .

The cartesian vector  p  =  (x,y,z)T  becomes  the homogenous vector  ph  = (kx,ky,kz,k)T.  A
transformation from the homogenous coordinate system into the cartesian coordinate system
is achieved by dividing the first three homogenous coordinates by the fourth homogenous
coordinate. Homogenous matrices have the advantage that a variety of transformations are
represented  by  matrix  multiplications.  One  of  the main advantages is  the  availability  of
perspective scaling.

Figure  4.  The  homogenous  matrix  combines  the  transformation  forms  translation,
rotation, perspective and scaling into one single matrix. The appropriate transformation
are marked by rectangles. The scaling is controllable by the diagonal elements.

Fourier Transformation

An important technique in digital image analysis is the Fourier transformation (FT).

In  the  field  of  electrical  engineering  the  parameter  t  (time)  is  often  used  for  the  one
dimensional  Fourier  transformation.  In  this  case the  transformation  leads  from the  time
domain  to the frequency domain.  This  context  goes  back  to  the  field  of  system theory,



because there are time continuous or time discrete signals. The digital image analysis deals
with  spatial  coordinates  and a  transformation  from the  spatial  domain  to  the  frequency
domain. In both domains the intensity or gray value images are represented by functions of
two parameters.

Continuous Fourier Transformation

The one dimensional Fourier transformation projects the signal f(x) from the spatial domain
into the frequency domain [8]. The definition is

with  f(x)  as  a  function  in  the  spatial  domain  expanded  to  infinity.  The  function  F(u)
completely describes f(x) in the frequency domain.

In generall, F(u) and f(x) are complex (a real and an imaginary part):

The absolute value |F(u)| represents the Fourier spectrum and  the phase angle.

The parameter u often stands for frequency, because of the decomposition of the exponential
term in a sine and a cosine part [9]:

The  result  from this  equation:  The  Fourier  transformation  is  a  sum of  sine  and cosine
harmonics, which frequencies are given by u. The physical dimension in image analysis is
'line pairs' / mm or 'image points' / mm.

The back transformation from the frequency domain to the spatial domain defines

The extension to a two dimensional function leads to the Fourier transformation



and the inverse Fourier transformation

Discrete Fourier Transformation

A given continuous function f(x) sampled in N equidistant intervals  leads to the discrete
function or series

The discrete value x ranges from x = 0,1,...,N-1. The discrete Fourier transformation (DFT)
and its inverse (IDFT) are shown in table 2.

TABLE 2. The one and two dimensional discrete Fourier transformation
(DFT)

and their inverse transformations (IDFT).
DFT IDFT

1D

with u,x = 0,1,...,N-1

2D

with u,x = 0,1,...,M-1
and v,y = 0,1,...,N-1

For a detailed description, the reader is advised to the references [10, 11, 12].

Fast Fourier Transformation

The two dimensional image analysis uses the discrete 2D-Fourier transformation. Practise
shows,  that  the calculation  of  a  Fourier  transformation  given  by  above  equations  is  an
expensive operation.

Taking a closer look towards the 1D-DFT shows that the amount of complex additions and
multiplications is proportional to N2: For a certain frequency u (u = 0,1,...,N-1) N complex
multiplications of the function f(x) with  and (N-1) additions of these results are
needed.  By introducing the fast  Fourier transformation (FFT) the number  of  calculations
reduces and the multiplications of the FFT become proportional to N log2N [11].  Several
algorithms are found in literature. An example is the 'decimation in time radix-2 algorithm'



presented in [11]. The table 3 shows, that for large amount of data the expense of calculation
steps is very small in contrast to the DFT.

N-dimensional DFTs can be split into 1D-DFTs (Separability).

TABLE 3. Expense of calculation of the FFT in
contrast to the direct DFT [11].

direct DFT FFT Expense

N N2 N log2N log2N/N

64 4.096 384 9,4%
128 16.384 896 5,5%
256 65.536 2.048 3,1%
512 262.144 4.608 1,8%

Correlation
In  image  analysis  a  commonly  used  technique  for  detection  an  object  -  respectively  its
position - is the correlation of an image with a template. The resulting correlation image
shows maxima at the spots of the largest correspondence of the two images. The basic idea
also goes back to the system theory.

Continuous Correlation

The continuous one and two dimensional correlation are defined as

(1)

and

The correlation theorem [10] makes it possible to calculate the correlation in the frequency
domain, where F*(u) is conjugate complex to F(u) [9] :

Discrete Correlation
The definitions of the discrete correlation are



with  x,x'  = 0,1,...,M-1  and y,y'  = 0,1,...,N-1,  whereas  the correlation  theorem retains  its
validity.

Hough Transformation
The general Hough transformation defines a transformation from a data domain into a model
domain by using a model equation [12]: The p model parameter m span a p-dimensional
vector space. The vector space reflects all solutions for a inverse problem with p parameters.
A linear equation system like

Gm = d,

with G as model matrix, m as model or parameter vector and d as data vector build the basic
approach. When considering a single point dq, it will lead to

The equation is a scalar product of a row q from the model matrix gq with the model vector
m. In the model domain, the equation stands for a (P-1)-hyper plane of all vectors m with a
normal vector gq and a distance dq from the origin of the model domain. For this reason a
one-to-one relationship between a point in the data domain and a (P-1)-hyper plane in the
model domain is established.

Three examples follow to illustrate the Hough transformation [13, 14].

Detection of a Line

In the general line equation given by

y = ax + b,

a represents the gradient and b the point where the line intercepts the y axis. The coordinates
(xi,  yi)  are  points on the line (Fig.  5a).  In the Hough domain (xi,  yi)  are  fix and (a,  b)
parameters (Fig. 5b):

b = -ax + y.

For each value (xi, yi) in the spatial domain, a corresponding line in the Hough domain exists.



These lines intersect in a single point (a', b'), which are the parameters for the seeked line in
the  spatial  domain:  Every  point  (xi,  yi)  represents  a  line  in  the  Hough  domain.  The
intersection of these lines in a point (a',b') denotes the parameters for a certain line in the
spatial domain.

It is not possible to detect vertical lines, because the gradient a becomes infinity. It can be
avoided by choosing the normal form of the line equation

with  for the distance from the center of the coordinatesystem to the line and  for the

angle between the normal of the line and the x-axis. The image point is not presented as a
line in the Hough domain, but as a sinusoidal curve. The intersection point of every curve
determines the parameters  and .

[a] [b]

Figure 5.Example for the Hough transformation. These images show the detection of a
line in the spatial  and the Hough domain. (a) Line in the spatial domain. (b) Hough
transformation of the line.

Detection of a Circle
Circles are described by the general circle equation

where a,b refer to the center position and r refers to circle radius. To avoid the computational
requirements of a 3-D Hough transformation, the problem is heuristically organized into two
stages and thus downgraded to a two dimensional Hough transformation:

find all circle centers, then
find the radius of each circle.

The corresponding circle center lies on the normal to the tangent from a given point on a
circle. Thus, the normals from several pixels from the same circle will intersect at the circle
center (Fig. 6). A histogram over an allocated (x, y) parameter space stores the histogramm
information. For each pixel the tangent is estimated as the line of best fit to all pixels within a
small neighborhood. This method allows the computation of the normal which is recorded in



the histogram. The maxima of the histogram give the location of candidate circle centers.

The next step is to find the corresponding radius for each  center  by computing  a  radial
histogram for  each  center:  For  every  pixel  in  the image its  distance  from the center  is
computed and recorded in a 1-D histogram. Maxima of the histogram correspond to the radii
of circles.

Figure 6. Detection of a circle by using the Hough transformation.

Detection of an Ellipse
An ellipse

a (x - p)2 + 2 b (x - p) (y - q) + c (y - q)2 = 1       and       ac-b2>0

has five parameters (a, b, c, p, q). A five parameter Hough transformation will make high
computational demands. So, an alternative heuristic approach lies in simplifying the problem
by separating the task into two phases: First, all possible ellipse centers are identified and
then the remaining three parameters by using a simple focusing implementation of the Hough
transformation.

The tangents of three points (x1,y1), (x2,y2) and (x3,y3) on the ellipse determine the center
point 0. The intersection point t1 and the middle m1 of the two points (x1,y1) and (x2,y2) are
calculated. The center 0 lies on the ray given by t1 and m1. The second and third point form
t2 and m2. The intersection of the two rays determine the center point 0 (fig. 7a).

Rays formed from different pairs of image points on an ellipse intersect at the ellipse center.
A two parameter Hough transformation accumulates these rays, with the intersection of the
rays corresponding to a maximum of the histogram.

To calculate the remaining three parameters a, b, c the ellipse is transformed to the center of
the coordinate system. The ellipse equation simplifies to

a x2 + 2 b x y + c y2 = 1.

By substitution of three points on the ellipse the linear equation system



follows, which can be solved to a,b,c. The equation ac-b2>0 has to be examined as well. If
this criteria is not fulfilled, the chosen three points do not lie on the ellipse or the calculations
of the tangents are unprecise. In this case, a recalculation has to be done.

Finally, the parameters a,b,c  are converted to , whereas r1  represents the major

radius, r2 the minor radius and  the angle between r1 and the x-axis (fig. 7b).

[a] [b]

Figure 7. Hough transformation - Detection of an ellipse. (a) Detection of the ellipse
center. (b) Determination of the remaining parameters.

Thresholding
A simple method for image segmentation is thresholding, which leads from a gray value
image to a binary image. The general approach defines

(2)

with the original function f(x,y), the binary function  andthe threshold value t. The

threshold  value  has  to  be  determined  with  regards  to  each  image.  There  are  different
possibilities to set this value. The simplest way is a static value: Every gray value less than a
value t becomes zero and every other value 1 (eq. 2). In semi thresholding not 1, but the
original gray value will be kept. Another method for thresholding uses the just mentioned
methods in intervals - including the limits of this interval - instead of the whole range. Also,
histogram information can be chosen to find the threshold value, e.g. by taking the global
minimum of the histogram.

If  gray  values  of  the  background appear  in  the  object  itself,  problems  occur  in  simple
threshold methods. To solve these problems, dynamic threshold takes a m x m window at the



position (x,y). If the background area and the object area have almost the same frequency of
occurrence, then the average value is a good threshold value:

An extension would be using the histogram information from this window. More elegant
methods  don't  calculate  a  new  value  for  each  pixel  and  thus  are  much faster.  Detailed
information about thresholding can be found in [15].

Region Growing
The name region  growing  already  describes  its  idea:  image  pixels  or  small  regions  are
combined to larger regions. From a set of starting points - seed points - a region spreads by
successive appending of neighbor pixels to the region. The appended pixels must have the
same certain features - like gray value, color or texture - as the seed point. The methods can
also be applied to three dimensional voxels. The nature of region growing can imply some
difficulties. Two of these difficulties are obvious right away: One the one hand, there are one
or more seed points that  have to be determined.  On the other hand,  features have to  be
defined for appending an pixel or not. These features must be stable, even if the growing
conditions are changing.

Depending on the kind of task, the seed points come from a priori knowledge. The region of
interest has a certain shape, brightness or color. If such an information is not available, it is
possible to chose seed points from the histogram, e.g. pixels near maxima [11]. The choice of
the affiliated features is often a certain gray value area. This area can be fix, variable in
different images depending on the seed point or dynamic by recalculation while the growing
process is running. The dynamic recalculation could be e.g. the average value of all pixels
that  belong to  the  region.  Next to  the discussed  features,  the  spatial  affiliation  must  be
fulfilled. Sometimes these conditions are not sufficient to stop a region from growing. In this
case additional image analysis techniques like filters have to be applied on the image.

Neighbors of Pixels
One of the basic relationship between pixels are neighbors [11] which have to be considered
in thresholding. Four horizontal and vertical neighbors denote a 4-neighbors of a pixel p,
N4(p):

Taking the diagional directions to acount, p will become a 8-neighbors, or N8(p):



Image Filtering
Within  the  scope  of  a  preprocessing,  operations  on  images  with  filters  are  adopted  to
suppress the noise and artifacts and to extract the needed information.

Smoothing Filters
Low pass filters have a smoothing effect. They suppress noise or subtle structures [12,16]
and have a loss of sharpness. These filters are also used as fundamental filters to buildup
complex filters.

For estimation purposes of the quality of a filter, its transfer function - the impulse response
of the Fourier transformation - is looked at: A smoothing filter fulfills its purpose to its best,
if the transfer function has a global maximum from which the function falls monotone and
becomes zero from a certain cut-off-frequency. The features of the filter are perfect, if the
transfer function has also an isotrope - no direction is over- or underrated - feature.

Gaussian Filter
One class of smoothing filters is the Gaussian filter. The one dimensional Gaussian function
[9]

defines the filter and therefore the shape is controlled by the parameter σ . The digital image
analysis uses the discrete two dimensional form

The Gaussian  function has features,  which makes  it  very  useful as a  smoothing filter in
practice and also as basis for more complex filters [16]:

Same shape in spatial and frequency domain:  The Gaussian function  keeps  the
same shape in both domains. The Fourier transformation is computed by

The second integral becomes zero because the sine function and thus the integrand is
antisymmetric. The Fourier transformation simplifies to:

1. 



Symmetry in rotation: The isotropy of the function grants uniformly smoothness in
all directions.

2. 

Scale  factor:  By scaling  the  parameter  ,  it  is  possible  to  set  the  width  of  the
function and with it the level of smoothness.

3. 

Separability: An efficient implementation - even for larger filter widths - can be done
by splitting the 2D function into two 1D functions (see 3.2.3).

4. 

Derivative Filters
To detect image structures, like edges or lines, filters are used which extract the derivatives
from the image. Roberts-, Prewitt- and Sobel-operators [11] are examples of filter types that
supply the absolute value of a gradient on different ways.

The sensitivity towards noise can be decreased relevantly by building the derivative of a
smoothed (lowpass filtered) image:

Instead of derivate the function directly, it will be convoluted with the Gaussian filter and
afterwards derivated. It follows in consideration of the convolution theorem [17, 18]:

(3)

with

The eq. 3 shows, that it leads to the same results either

convolute the image with the Gaussian function and afterwards derivate it, or
derivate the Gaussian function and afterwards convolute the result with the image.

The derivation of the Gaussian function (second proposition) can be calculate analytically
and therefore is practical in computer systems: From the continuous Gaussian function the
first and second derivatives are shown in Figure 8. To use them for digital image analysis,
discrete filter masks - for each σ - have to be generated. An efficient filter design with the
Gaussian filter was developed by Deriche [19, 18].



Figure 8:  Derivatives  of  the  Gaussian  functions.  The upper image  presents  the  original

Gaussian function . In the second row, from left to right, there

are the first derivatives gx and gy. The third row shows the second derivatives gxx, gxy = gyx
and gyy.

Erosion and Dilation

The erosion and dilation filter are a morphological filters. The erosion changes the shape of
objects in an image by eroding (reducing) the boundaries of bright objects. The boundaries of
dark ones get enlarged. The erosion filter is often used to reduce, or eliminate, small bright
objects. The dilation filter works the other way round.

Hessian Matrix
Setting the intensity values of a 2D image as a third coordinate in an orthogonal system leads
to a three dimensional surface. Information about the topology of a 2D image can be gained -
except from the gradients - by taking the second derivatives of the image. These second
derivatives form the so called Hessian matrix:

and for a two dimensional image:

The derivatives are calculated for each point of the image. The matrix is real and symmetric.
Therefore, its diagonal form [20] and thus a local orthonormal coordinate system can be built



for each image point. After transforming the matrix to its diagonal form, the Eigenvector,
which belongs to the largest Eigenvalue, points into the direction of the locally strongest
curvature. The Eigenvector belonging to the smallest Eigenvalue shows into the direction of
the locally smallest  curvature. This local  coordinate system is shown in an example of a
sinusoidal wave (fig. 9).

Figure 9. Eigenvectors of the Hessian matrix. The Hessian matrix was calculated for a
single point on the maximum of a sinusoidal wave. The Eigenvector which belongs to the
largest Eigenvalue (red) points into the direction of the locally strongest curvature. The
one belonging to the smallest Eigenvalue shows into the direction of the locally smallest
curvature (green).

Canny Edge Detection
The edge detection together with methods like region growing or active contours (see 3.6 and
3.10) makes it possible to find interrelated regions. Edge detection improves the robustness
of these methods,  e.g.  the knowledge about the edges allows a  better formulation of the
truncation criteria.

The basic idea when searching for edges is finding image regions with a high gradient. As
shown  in  section  3.7  some  preconsideration  has  to  be  undertaken  to  extract  realizable
gradients. A derivative operator for edge detection must fulfill two requirements [16]:

Noise reduction: The possibility that noise is detected as an edge must be as low as
possible.

1. 

Exact localization: The edge has to be found as exact as possible from the calculated
gradients.

2. 

Both requirements are hard to fulfill at one time, because the more effective the smoothness
of an image, the less it is possible to determine the position of the edge. The proposition of
Canny to solve this problem [21] subdivides in three parts (fig. 10).



Figure 10. Flowchart for Canny edge detection.

Calculate Local Gradients
The recursive Gaussian filter developed by Deriche [18] - presented in section 3.7.2 - gives
the derivatives of the image. This filter has all the needed requirements to fulfill the above
quality criteria. Deriche also extended the method of Canny for the three dimensional case
[19].

Non-Maxima-Suppression
Sometimes,  the  image  M[x,y]  contains  wide  lines  or  edges  with  high  gradient  values.
Searching for local maxima thinners these regions. The width of the detected edges can be
restrained to some few pixel:

The directions of the gradients are reduced to the ones, with which a horizontal, vertical and
diagonal movement in a 3 x 3 neighborhood is possible. A point from M[x,y] is only taken
into the resulting image N[x,y], if its  value is larger than its neighbors along the gradient
direction. All other values of N[x,y] become zero.

Jain and Devernay describe methods with subpixel accuracy in edge detection in [16] and
[22].

Hysteresis-Thresholding

Taking a normal thresholding algorithm with a static value t to suppress the wrong detected
edges in N[x,y] comes with the problem of the choice for t: If t is too small, too many wrong
detected edges are left in the image. Is t is too large, important edges are missing.

The hysteresis thresholding offers an efficient approach: Two different thresholding values
thigh  and tlow  are applied on the result of the non-maxima-suppression. This leads to two
images Thigh[x,y] and Tlow[x,y]. Thigh[x,y] will probably have not many wrong detected edges
but openings in these edges. Presume that a related contour in Thigh[x,y] has a  minimum
length of lmin and an opening in the contour. The algorithm checks, if points from Tlow[x,y]
can be added to Thigh[x,y] within a 8-neighborhood till the opening is closed or the end of the
contour is reached. The method becomes faster by searching only in the orthogonal direction
of the gradient.

Active Contours
Active contours are multidimensional, geometric models and capable of elastic deformation -
depending on their degrees of freedom - to match to a quantity of measurement data. The
elastic  forces come from the inner deformation energy.  Outer  forces  form the model.  A
potential energy dependening on the model data forms the outer forces.

Active contours have the ability to segment anatomical structures and follow them in image



sequences by  combining derivated information from the image data  (Bottom-Up) with a
priori knowledge about the position, size and shape of the structure (Top-Down) [23]. They
differ  in  manner  and efficiency of  the  underlying  models,  its  dimension  and its  motion
equations.  Many  extensions  and  adaptations  are  reported  since  the  first  publication  of
Terzopoulos et. al. [24]. Two examples are discussed in the following.

Snakes

The classical approach to active contours is the so called snake [24], a parameterized contour
moving in the plane  to minimize a given energy functional. The coordinate

functions  x(s)  and  y(s)  build  the  parameter  description   of  the

contour.

These functions have the image domain  as value domain and  as

definition domain. The energy functional

(4)

describes the shape of the contour. The final shape of the contour results from minimizing of
the energy. The first energy term stands for the internal elastic deformation energy and is the
sum of the strain energy  and the bend energy  :

The parameter wD defines the tension and thus the strain efficiency, whereas wK  rules the
rigidity and thus the smoothness of the contour.

The image information influences the second term for the external energy in eq. 4. In

the scalar potential function  is chosen in a way, that its minima coincide with the

positions of the image characteristics. These characteristics have to be found. Edges suit well
as image characteristics for the segmentation. The gradient of the smoothed image I(x,y):

builds the potential function with  being a smoothing filter, which bandwidth influences



the expansion of the local minima.

The function  must fulfill the Euler-Lagrange equation

as the necessary condition for the existence of a solution for eq. 4 [25]. It is possible to solve
this equation numerically, e. g. by Finite Difference - and Finite Element Methods.

Balloons

In contrast to the more expensive layered volume segmentation with planar active contours,
the three dimensional surface models can speed up the segmentation. Simultaneously, the
noise  insensitivity  and  the  smoothness  between  the  layers  raise.  Especially,  the  three
dimensional models can be used efficiently and precisely in segmentation of time dependent
volume images.

The physical behavior of the three dimensional active contour or balloon is equivalent to -
depending on the variation of parameters - a thin plate or a strained membrane and deforms
equally allover. The three dimensional active contour is given by

The energy functional

(5)

describes the deformation energy of the contour [26] and corresponds to the term  in

eq.  4.  The  non-negative  factors   and   determine  the  tension  and

rigidity of the surface. An increase of  normally reduces the surface,  whereas

larger values of  restrict the flexibility of the contour. The factor  is specific

for the three dimensional contour and rates the torsion of the surface.



Methods
The  section  describes  the  methods  to  determine  the  positions  of  the  catheters  and  the
electrodes  with  techniques  of  digital  image  analysis  (see section  3).  The  two  and  three
dimensional  images  of  the  catheters  come  from  two  modalities:  x-ray  and  computed
tomography (CT).

One String Catheter

Calibration
The usage of a biplanar x-ray intensifier system allows to acquire pictures from two different
views. This is necessary for a spatial localization of the electrodes.

At  first,  the  system  must  be  calibrated.  X-ray  image  amplifier  systems  have  a  larger
distortion  than  lens  systems.  Thus,  a  distortion  correction  is  executed  before  the  actual
camera calibration.

In x-ray systems two main distortions appear: One due to the mapping of a flat image onto a
curved input phosphor (pincushion distortion) and a second due to the deflection of electrons
in  the  earth's  magnetic  field  (S-distortion)  [27].  A  distortion  correction  technique
approximates the mapping behavior which is independent from the system parameters. The
internal  parameters  make  it  possible  to  describe  an  undistorted  mapping  of  the  pixel
coordinates. They are calculated heuristically by the bicubic polynome

(6)

which  can  handle  the  possible  appearance  of  five  aberrations:  pincushion  distortion,
astigmatism, S-distortion, spherical aberration and coma [28]. These aberrations are errors of
the third order.
As reference object for the calculation of the coefficients serves a perspex plate - mounted
directly in front of the input phosphor screen - with 265 metal pellets (Fig. 11). The image of
the plate  is correlated with  a  template  image that  presents  a  circle  [29].  This  allows  to
determine the positions of the pellets and thus an overdetermined linear equation system to
calculate  the coefficients of  eq.  6. The singular value decomposition  (SVD) for  example
delivers an approximation to the solution of the equation system [20].



Figure 11. Photographic and X-ray image of the distortion correction reference object.
They have a diameter of 2 mm (middle pellet 4 mm) and a square arrangement with a
distance of 10 mm.

The camera  calibration  can  be performed with the  undistorted  image by the  usage of  a
common method like the direct linear transformation [11, 29]. That method - build upon the
principles  of  a  pinhole  camera  -  works  with  homogenous  coordinates.  To  map  three
dimensional  world  coordinates  to  two  dimensional  image  coordinates,  the  homogenous
world coordinates are multiplied with a calibration matrix:

= (7)

(8)

The variable  stands for the calibration matrix,  for the homogenous image vector and

 for  the  homogenous  world  vector.  To  determine  the  matrix  elements  of  ,  the

coordinates from eq. 8 are transformed to the cartesian form

(9)

From Eq. 9 follows bh1=xh4 and bh2=yh4 and Eq. 7 ensues to
xb bh4 = a11 xw + a12 yw + a13 zw + a14
yb bh4 = a21 xw + a22 yw + a23 zw + a24 (10)

bh4 = a41 xw + a42 yw + a43 zw + a44 .

Substituting bh4 in the above eq. 10 leads to two equations with 12 unknowns
a11 xw + a12 yw + a13 zw - a41 xbxw - a42xbyw - a43xbzw - a44 xb + a14 = 0



a21 xw + a22 yw + a23 zw - a41 ybxw - a42ybyw - a43ybzw - a44 yb + a24 = 0. (11)

To solve eq. 11 six world points with known coordinates (xwi, ywi, zwi) and the corresponding
image points (xbi,  ybi)  are  needed (i  = 1,...,6).  To get a  numerical  solution  one solution
component is set, in general a44 = 1 [30]. From N calibration points the equation system

(12)

with

and

can be set up and solved with e. g. SVD.

A wooden cube model serves as reference object for the calibration points (fig. 12).

[a]  [b] 



[c] 

Figure 12.  Reference object  for  the  calibration.  It  contains  12  metal  pellets  with  a
diameter of 5 mm. The positions of the pellets are measured with a precision of 1 μm. (a) 
Intermediate phase of the production - for the exact measurement - before combing to the
cube model, (b) top view and (c) side view.

Catheter Electrodes
In  a  first  step,  the  electrode image (Fig.  13a)  is  correlated  with  a  template  image.  The
accurate center of the electrode cannot be found because of the electrode shape in the image.
The template image contains a small circle, whereas the electrode has a cylindric shape. This
shape can even be more deformed dependening on the position of the catheter in the image.
So, there is a possibility of more than one maximum in the correlation image that will appear
in one electrode. Thus, the found maxima serve as seed points for region growing which
results in a segmented image with knowledge of the area and the two dimensional centroid.
The centroid approximates the three dimensional projection. With the help of the Hessian
matrix,  the  electrodes  can  be  sorted.  The  general  sorting  idea  illustrates  fig.  13b:  The
information from the Hessian matrix about the topology helps to detect the tip of the catheter
by  analyzing  the  surrounded  array  in  regard  to  the  occurrence  of  Eigenvectors  in  the
direction of the catheter string. Afterwards, the string is followed automatically likewise the
marching lines algorithm [31] and the electrodes get numbered.

Figure 13. Topology of the catheter. The right image shows the intensity or gray value as
third coordinate.

Determination of the 3D-Position

Both x-ray tubes have a calibration matrix of the form



In the following context l and r depict the left and the right tube. In the style of section 4.1.1
follows:

xb,l = a11,l xw + a12,l yw + a13,l zw - a41,l xb,lxw - a42,lxb,lyw - a43,lxb,lzw + a14,l
yb,l = a21,l xw + a22,l yw + a23,l zw - a41,l yb,lxw - a42,lyb,lyw - a43,lyb,lzw + a24,l

(13)

and

xb,r = a11,r xw + a12,r yw + a13,r zw - a41,r xb,rxw - a42,rxb,ryw - a43,r xb,rzw + a14,r
yb,r = a21,r xw + a22,r yw + a23,r zw - a41,r yb,rxw - a42,ryb,ryw - a43,r yb,rzw + a24,r .

(14)

The two calibration matrices and the electrode pairs in the left and right image are known.
Thus, the unknown world coordinates (xw, yw, zw) can be calculated. The eq. 13 and 14 lead
for each electrode i to N equation systems

with

and i = 1,...,N. The N equation systems are overdetermined. The solutions deliver the three
dimensional position of each electrode i.



Multielectrode Basket Catheter
Due to the fact that the image recording modality is the same as for the string catheter, the
calibration and the three dimensional localization procedure does not differ from the ones
presented in the last section.

The electrode positions of the basket catheter in the image are initially localized using a high
pass filter and a correlation of the images with a circular shaped template. Afterwards, the
user interactively marks the strings. Each string is then traced - by using the Hessian Matrix -
automatically and each electrode on the string gets marked. The three dimensional electrode
positions are determined using the calibration matrices from the x-ray system.

In some cases not all electrodes can be found due to, e.g. extreme image noise or overlapping
catheter strings. A three dimensional computer model of the basket catheter is created and
visualized (fig. 14).

Figure 14. Computer model.

The unknown electrode positions are specified from the three dimensional model data via a
matrix multiplication:

All homogenous coordinates can be transformed to cartesian coordinates by dividing each
coordinate by the fourth coordinate.

The equation array



determines the matrix . The vector  consists of the components of the homogenous 4 x
4  matrix   and  the  vector   the  measured  electrode  positions  from the  image

analysis. The 15 x n matrix  is composed of the electrode coordinates from the

computer  model and  the measured  electrode positions.  Only  those n  positions  are  taken
which are found in the images. The SVD calculates the elements of  resulting in the matrix

 with a44 set to 1 for numerical reasons.
Two other methods to match the positions are linear and spline interpolation [20].

Multielectrode Balloon Catheter

Segmentation of the Balloon Catheter

The segmentation  divides the image data  taken from CT into  regions:  On one hand the
balloon catheter  and  on  the other  hand the heart  tissue and the surrounding liquid.  The
images are acquired from an isolated beating pig heart positioned in a jar filled with a special
perfusion fluid (Langendorff preparation [32, 33]). The general strategy for the segmentation
describes Fig. 15.

Figure 15. Flowchart for the segmentation of the balloon catheter.

Two template image volumes are generated in the following way from the original image
volume so that their difference image highlights the ballon. To create the first template, in the
original image volume the noise is masked out with thresholding and dilation. The result is
subtracted from the original volume (fig. 16b). In the second template the fine structures are



eliminated by using erosion and dilation filtering. The two templates lead to the difference
image volume (fig. 16c) containing almost no tissue information but only the fine structures.

[a]       [b] 

[c] 

Figure 16. Steps to create the difference image. (a) Median filtered image. Large noise
areas are denoted white. (b) After masking the noise areas with artefacts. (c) Difference
image.

The next step - from a theoretical point of view - would be using a sixth degrees Hough
transformation on the three dimensional difference image to find the balloon catheter which
has a shape of an ellipsoid. Because of the high computational demands another heuristical
way is chosen: In the Hough domain, an ellipsoid denotes a sphere with an inner hole. So, a
synthetic  sphere  is  correlated  with  the  difference  image  volume.  The  maximum of  the
correlation result defines the centroid of the ellipsoid.

A  model  of  the  catheter  positioned  into  the  original  volume  to  the  centroid  position
determines the orientation of the two small axes of the ellipsoid: The model rotates about



180° in steps of 1° in both axis directions. After each rotation a correlation of the result and
the difference image volume is performed. The maximum of these correlation values delivers
the two angles.

The mentioned methods only  approximate the position of  the balloon catheter.  To get a
precise position, the centroid and the orientation define a small initial contour (an ellipsoid).
An active contour grows in the Canny filtered original image volume (Fig. 17). After the
active contour finds a  stationary solution,  the principal components  and the centroid  are
calculated. Applied to the model, this information leads to a precise location of the model in
the original image volume.

Figure 17. The active contour fills the balloon catheter in the Canny filtered CT-image.

With the  next  step  the rotation  in the longitudinal  direction  of  the catheter  is  specified.
Therefore, a model catheter including the marker is rendered into the original image with the
information  about  centroid  and  orientation.  Afterwards,  the  model  rotates  about  its
longitudinal direction to fit the real and the model marker (Fig. 18).



Figure 18. Calculation of the orientation of the balloon catheter.

Segmentation of the Electrodes

The general approach for the segmentation of the electrodes shows fig. 19.

Figure 19. Flowchart for the segmentation of the electrodes.



A calibration  measurement  with  the EnSite-System must  be  performed to  determine the
electrode positions of the balloon catheter. Therefore, a perspex cylindric phantom with 81
electrodes is filled with NaCl (Fig. 20). A function generator applies a voltage of 1 V with a
frequency of f=10 Hz to two different electrodes on the phantom for a variety of electrode
positions. The EnSite-System records the potentials at the electrodes of the catheter.

Figure 20. The phantom to localize the electrode positions on the balloon catheter. The
phantom  stands  inside  the CT  and  the  catheter  is  fixed  inside  the  phantom.  In  the
background, there is the function generator to apply the voltage.

When acquiring CT images from the phantom with the balloon catheter inside (Fig. 21), it is
of importance to note and keep the exact position of  the phantom while  not moving the
catheter. This guarantees a correct measurement and calibration.

Figure 21.  CT-image of  the phantom. The catheter and the markers delimit  from the
fluid. Artefacts are shown at the wall of the phantom caused by the metal electrodes.

The first step of the image analysis removes the artefacts (Fig. 22a) by eroding the original
image volume (Fig. 22b). From the resulting image the positions with gray values higher
than zero are taken. The gray values from these positions in the original image form the non-
artefacted image (Fig. 22c).



[a]      [b] 

[c] 

Figure  22.  Removal  of  the  metal  artefacts  from  the  CT-images.  (a)  CT-image  with
artefacts  caused  by  the  electrodes.  (b)  Mask  image.  The  erosion  filter  removes  the
artefacts. (c) CT-image almost without any artefacts.

A phantom model is matched into the volume by minimizing a quality function, the sum of
the the overlapping voxels. After the localization of the balloon catheter in the CT-image
volume - described in section 4.3.1  -,  the position of  the catheter  and  its  marker  in the
volume are known.

Electrical field calculation with the Finite Difference Method determines the position of the
electrodes respectively their rotation. Therefore, a combined model of the phantom and the
balloon catheter is  used.  The phantom model gets the electrode positions for  the voltage
input by hand. The catheter model includes the electrode positions derived from the EnSite-
System but only referred to the centroids of the balloon catheter.

The  result  of  the  field  calculation  is  compared  to  the  measured  EnSite  potentials:  The
catheter model rotates around its longitudinal direction about 360° in steps of 1°. In each
rotation step,  the  potential  information  from the  model  electrodes  is  correlated  with  the
measured data from the EnSite-System. The correlation is performed for each level of the
catheter (Fig. 23). The maximum of  the results gives the rotation angle,  respectively the
electrode positions towards the marker position.



Figure 23. The catheter model with the eight levels. Each level or ring contains eight
electrodes.

Results

One String Catheter

Distortion Correction
A qualitative analysis of the positioning of the x-ray system shows a translation and rotation
deformation of the distortion correction grid when moving the c-bow. Obviously, the heavy
weight  of  the  image  intensifier  and  the  x-ray  source  slightly  deforms  the  c-bow.  The
mechanical  distortion  is  larger  than  the distortion  due to  the  earth's  magnetic  field.  The
distortion correction of the magnetic field shows Fig. 24. To reduce the mechanical distortion
a separate  distortion  correction should  be performed for  each  position  of  the c-bow and
before every calibration.  The behavior  and precision in the mechanical  movement of the
x-ray system has to be considered as well.



[a] 

[b] 

Figure 24. Distortion correction. The original image (a) shows a pincushion distortion
and a radial loss of  brightness towards the edge.  The image in (b)  is  corrected and
brightened.

Calibration
The accuracy of the calibration can be validated using the calibration reference object. The
object  rotates and topples to various positions differing from the calibration position. Per
measurement, only a subset of the metal spheres is taken to account. The distances between
two spheres are calculated from the measured results xm and from the precise positions .

The root mean square (RMS) error

yields information about the accuracy as well as the maximum error. Hereby, n is the amount
of the vectors. The vector xi denotes the difference of the length vectors.  The measured
distances between 60 and 120 mm have a RMS-error of 0.1 mm and a maximum error of
< 0.5 mm.

To reduce the calibration effort it is cogitable to use a Look-Up-Table (LUT) for each each
x-ray tube and each position of the c-bow. The LUT stores the calibration matrices and the



distortion  correction  parameters.  This  methods  works  if  the  x-ray  system  offers  the
possibility for a precise repositioning. In that case, further examinations must analyze the
intervals of a recalibration procedure.

Electrode Localization

At first, the electrodes of the x-ray system are localized and numbered. The position of the
centroid serves for an approximation position for the three dimensional projection (Fig. 25).

[a]  [b] 

Figure 25. Localization of the string catheter. Figure (a): The centroid of the white area -
originated  from  region  growing  -  is  defined  as  electrode  position.  Figure  (b):  The
Eigenvectors of the Hessian matrix in the centroids denotes the marching line on the
catheter.

Using  a  phantom  the  localization  of  a  complete  electrode  set  with  extracorporal  and
intracardial  electrodes (fig.  26)  was  tested.  With  the aid  of  a  CCD camera  system it  is
possible to localize the three dimensional electrode positions outside the phantom. The inner
electrodes and a subset of the outer electrodes are determined from the images of the x-ray
system.  Both  systems  can  be  transformed  into  one  coordinate  system  by  rotation  and
translation [34] (Fig. 27).

Figure 26. Phantom with 12 electrodes. A four electrode string catheter is inside during
the x-ray measurement.



Figure 27. Movie: Matching of the three dimensional electrode positions of  the CCD
cameras and the x-ray system.

Multielectrode Basket Catheter
This  technique  requires  only  little  interactivity  from  the  user  and  no  additional  image
sequences  or  cumbering  irradiation to  the patient.  The  modified  computer  model of  the
basket catheter contains all measured and rated electrode positions (Fig. 28).

Figure 28. Result of the comparison from the computer model and the measured data.

Tests  with  linear,  spline  and  SVD  interpolation  show  that  the  SVD  with  the  matrix
multiplication yields the best results. The error is less than 0.5 mm: Electrode positions are
randomly deleted from a complete localized basket catheter and interpolated by the above
methods and compared to the real positions.

Multielectrode Balloon Catheter

Catheter Orientation
The catheter is matched and found in the available image volume data with a robust and
reproducible method. The red model catheter denotes the real catheter (fig. 29). The rotation
angle to match the real and the model marker is determined for each time step of the CT data
set.



Figure 29. Matching of the balloon catheter (red) with a CT volume set.

Electrode Localization
For the six configurations with eight levels, a total amount of 48 related angles results. An
example of the measured and the calculated potentials gives fig. 30: The potentials differ
about the same angle in every configuration. The average value of the these related angles
computes the rotation angle to 53° .



Figure 30.  Comparison of  the measured (blue)  and the calculated (red)  interpolated
potentials. The images (a) to (f) show one electrode level in the different configurations.

A final result is the movie in Fig. 31 where the measured potentials are projected on the
segmented balloon catheter. The measured potentials are interpolated for the whole surface
of the balloon catheter.



Figure 31: The movie shows the measured potentials projected on the ballon catheter

Conclusions
This  work  presents  robust  techniques  for  three  dimensional  electrode  and  catheter
localization. The techniques require no or only a small amount of interactivity from the user.
The localization in  the x-ray system needs no  additional image sequences or  cumbering
irradiation to the patient.

The  modified  computer  model  of  the  basket  catheter  contains  all  measured  and  rated
electrode positions. That model and the string catheter model can be used in combination
with the extracorporal electrode positions and a volume dataset. By using techniques which
are already developed,  it  is  possible  to  transform the presented  model into  the frame of
reference of a volume dataset [35]. The CT data can be expanded to a segmented volume
data  set  by  classifying  e.  g.  the  heart  and  other  tissues.  All  the  acquired  information  -
together with the measured electric potentials and the conductivity information - can be used
for  field  calculations  and  reconstruction  of  bioelectrical  sources  on  the  heart.  The
information  concerning  the  balloon catheter  in  the  heart  will  be  used  for  validation  and
parameterization  of  electrophysiological  models  of  the  heart.  Future  objectives  are  the
simulation  and planning  of  medical  interventions (e.  g.  RF Ablation)  and more different
catheters and a wider range of modalities are taken into account.
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