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Abstract. A model of the electromechanical behavior of a myocardial region is presented. The model
combines an electrophysiological, a force development and an excitation propagation model. All of
these models incorporate the effects of deformation of the myocardium. An extension of the traditional
bidomain  model  for  excitation  propagation  is  proposed.  The  extension  describes  the  stretch
dependency of the conductivity tensor of the intra- and extracellular space and is constructed outgoing
from physically motivated assumptions, which simplify the behavior of the conductivity tensor. The
extension makes usage of the deformation gradient tensor,  which is a foundation in the theory of
continuums  mechanics.  The  performed  simulations  illustrate  some  effects  of  myocardial
electromechanical behavior.
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Introduction
Knowledge  concerning  the  development  and  propagation  of  electrical  excitation  in  the
myocardium  is  of  importance  for  the  understanding  of  the  physiological  and
pathophysiological behavior of the heart. Different approaches allow the simulation of an
excitation  development  and  propagation  in  the  myocardium.  An  approach  consists  of
combining detailed electrophysiological models of single myocardial cells with models of
the electrical conductivity of the gap junctions and extracellular space.

Commonly, the electrophysiological models describe the concentration and flow of ions as
well as the resistor of cellular structures and the transmembrane potential by a set of coupled
differential  equations.  Some  of  these  models  are  capable  of  reproducing  effects  of
mechanical stimuli, eg stretching the cell can lead to an excitation of a cell and influences the
propagation of excitation. Stretch of the myocardium can occur eg by an enhanced blood
inflow leading to an increase of the end-diastolic volume as well as a mechanical procedure
from  outside  of  the  body  and  inside  of  the  cavities.  Under  the  influence  of  stretch
arrhythmias can be initiated and sustained.



In this work a three dimensional model of a myocardial area is presented. The model allows
the simulation of an electrical excitation propagation and of force development under the
influence  of  stretch.  The model  is  derived  from a modified  Noble-Kohl-Varghese-Noble
model of  a  ventricular  cell.  The electrical  coupling  of  cells  is  achieved by  usage of  an
extension  of  the  bidomain  model,  which  consists  of  calculation  of  the  intracellular  and
extracellular current flow. Therefore, Poisson's equation for electrical current fields is applied
on grids, which are geometrically deformed by the stretch. A new approach is introduced to
model the change of the electrical properties of the intra- and extracellular space depending
on the deformation. The calculation takes into account the orientation of myocytes, which
leads to an anisotropy of the electrical conductivity.

The method is applied to determine the stretch induced changes of the conduction velocity
and to simulate the excitation initiation by stretch. Finally, a realistic model of region of the
ventricular heart wall is presented implying the anisotropy introduced by the orientation of
the myocytes. Demonstrated and visualized is the propagation of excitation outgoing from
endocardial  Purkinje  fibers,  the concentration  of  intracellular  calcium and  the  generated
force.

Methods

Microscopic Anatomy of the Human Heart

Overview
The myocardium consists primarily of discrete myocytes, which are arranged in an oriented
and laminated structure [1][2][3]. The myocytes are surrounded by the extracellular space,
which contains eg collagen fibers, water, and electrolytes. Additionally, the myocardium is
pervaded by nerves, capillaries, blood vessels, and lymphatic vessels. It can be distinguished
between myocytes  assigned to  the working  myocardium and myocytes  with  the task  of
initiating and transmitting an electrical excitation. This work is focussed upon the myocytes
of the working myocardium.

Myocytes of the Working Myocardium
Myocytes  are  enclosed  by  the  sarcolemma,  a  phospholipid  bilayer,  which  delimits  the
extracellular from the intracellular space. In the intracellular space resides the nucleus, the
mitochondria, and the myofibrils. Myofibrils are tube shaped contractile elements taking a
high part of the cellular volume. They have a thickness of ≈ 1 μm and are divided every ≈ 2.5
μm by  the  Z  disk  into  the  sarcomeres.  The  sarcomere  contains  the  actin  and  myosin
filaments, which are of importance for the mechanical contraction. The sarcolemma intrudes
at the adjacencies of the Z disks to form the transversal tubuli and to infold the myofibrils.
The  system  of  longitudinal  tubuli  plays  -  in  contrast  to  the  skeletal  myocytes  -  in
cardiomyocytes only a subsidiary role [4].

Myocytes are of irregular shape, but a dominant principal axis can be assigned. This leads to
a macroscopic anisotropic electrical and elastomechanic behavior.

The ratios of volume and area of the cell components are differing for atrial and ventricular
myocytes [4].

Gap Junctions
The intracellular space of myocytes is coupled by gap junctions, which are located by bundle
at the intercalated disks. Intercalated disks are disk shaped segments, which mechanically
couple cells. Primarily, the disks can be found at or near to the ends of myocytes [5].

It  is  distinguished between longitudinal and transversal  gap junctions. A longitudinal gap
junction is oriented in approximately the same direction as the first principal axis of adjacent
myocytes, a transversal gap junction is oriented perpendicular thereto.



The density and distribution of orientations of gap junctions differs depending on the tissue.
Eg  the  density  in  the  sinus  and atrioventricular  node  is  smaller  than  in  the  ventricular
myocardium. The average density of gap junctions in longitudinal orientation is larger than
in the transversal orientation [6]. The average length of longitudinal gap junctions is smaller
than  the  length  of  transversal  gap  junctions.  Both  circumstances  lead  to  a  macroscopic
anisotropic electrical conductivity.

Cardiac Collagen Network
The myocardium is pervaded and surrounded by a  mesh of  extracellular  collagen fibers,
which are composed of a multitude of collagen fibrils. The collagen network is a determinant
for  the viscoelastic  behavior  of the myocardium. The network serves  for  the mechanical
coupling of the myocytes, capillaries, and lymphatic vessels.

Collagen fibrils have a thickness from 30-70 nm [7]. The fiber thickness is in physiologic
cases between 120 and 150 nm . An increase up to 250-300 is possible in pathophysiologic
cases (hypertrophy) [8].

The density of collagen fibers is depending on the tissue. Eg a small density can be found in
papillary muscle and trabeculae, a high density in the subendocardial and subepicardial left
ventricular myocardium [7][9].

Modeling of Myocytes

Modeling of Electrophysiology

The  electrophysiological  state  of  cells  can  be  described  by  a  spatial  distribution  of  ion
concentrations,  which  are  changed  by  passive  and  active  transport  mechanisms.  The
transport of ions is time dependent as well as influenced by gradients of concentrations and
the electrical field.

Most electrophysiological models of cells are constructed outgoing from the classical work
of Hodgkin and Huxley, who described quantitatively the active and passive behavior of a
neuron membrane [10].  Hodgkin  and Huxley  used  voltage clamp techniques  to  measure
currents through the membrane of giant axons of squids. From this data an equivalent circuit
consisting of resistors, a capacity, and voltage sources was parameterized. Partly, the resistors
were nonlinear time and voltage dependent.

In the last years a large number of models of cardiac cells were constructed (see Table 1),
with increasing abilities to describe the different electrophysiological mechanisms. Primarily,
the models are produced outgoing from animal experiments. Modern models include detailed
descriptions  of  the  behavior  of  intracellular  structures  as  well  as  of  the  influence  of
pharmaceutical and deformation.

TABLE 1. Electrophysiological models of cardiac cells.

Date Publisher Cell Type Animal Reference

1977 Beeler, Reuter ventricular
myocardium mammal [11]

1985 DiFrancesco, Noble Purkinje fiber mammal [12]
1990 Earm, Noble atrial myocardium rabbit [13]

1991 Luo, Rudy ventricular
myocardium guinea pig [14]

1994 Luo, Rudy ventricular
myocardium guinea pig [15][16]



1994 Demir, Clark, Murphey, Giles sinus node mammal [17]

1996 Demir, O'Rourke, Tomaselli, Marban,
Winslow

ventricular
myocardium canine [18]

1998 Nygren, Fiset, Firek, Clark, Lindblad
et al. atrial myocardium human [19]

1998 Noble, Varghese, Kohl, Noble ventricular
myocardium guinea pig [20]

1998 Jafri, Rice, Winslow ventricular
myocardium guinea pig [21]

1999 Winslow, Rice, Jafri. Marban,
O'Rourke

ventricular
myocardium canine [22][23]

Noble-Varghese-Kohl-Noble Model
A foundation of  this work is the Noble-Varghese-Kohl-Noble model of a ventricular cell
[20]. Hereby, the time derivative of the transmembrane voltage Vm is described by:

δVm
δt  = –   1  

Cm
Isum

Isum  = Ib,K + IK1 + IKr1 + IKr2 + IKs + IK,ACh +
Ib,Na + INa + Ip,Na +
Ib,Ca + ICa,L,K + ICa,L,Na + ICa,L,Ca +
ICa,L,K,ds + ICa,L,Na,ds + ICa,L,Ca,ds +
INa,K + INa,Ca + INa,Ca,ds +
INa-stretch + IK-stretch + ICa-stretch +
INs-stretch + IAn-stretch

with the following parameters:

membrane capacity Cm

background K current Ib,K

time-independent
K current

IK1

time-dependent,
delayed K current IKr1, IKr2, IKrs

ACh-dependent
K current IK,ACh

background Na current Ib,Na

fast Na current INa

voltage dependent
Na current Ip,Na

background Ca current Ib,Ca

L-type Ca current
ICa,L,Ca , ICa,L,Ca,ds , ICa,L,K ,
ICa,L,K,ds , ICa,L,Na , ICa,L,Na,ds



Na-K exchange
pump current INaK

Na-Ca exchange
pump current

INaCa, INaCa,ds

stretch activated current INa-stretch , IK-stretch , ICa-stretch , INs-stretch , IAn-stretch

Intracellular Mechano-Electric Feedback

The  Noble-Varghese-Kohl-Noble  model  includes  dependencies  of  electrophysiological
parameters  on the length  or  tension  of  the sarcomere.  The mechano-electric  feedback is
realized by introducing

selective and non selective stretch-activated ion conductances
a length/tension dependent modulation of calcium binding to troponin
a length/tension dependent modulated sarcoplasmatic leak current

A modification of the model is performed, whereby an adaption according to measurements
[24] is obtained. This modification concerns the stretch dependent action potential duration.
The influence of stretch on the run of the transmembrane potential is illustrated in figure 1.
Hereby, the stretch is specified by the length of the sarcomere with a default of 2 μm . The
resting potential as well as the progression of the action potential are dependent on the length
of the sarcomere.

Figure 1. Transmembrane potential dependent on length of sarcomere. The cell is excited
by applying a stimulus current at t = 1 s. The sarcomere length SL ranges from 1.5 to 2.4
μm. The default length of a sarcomere is 2 μm

.

The initiation of an excitation by mechanical stretch is depicted in figure 2. The stretch is
applied for a duration of 5 ms with varying strength. Depending on the strength of stretch an
effect ranging from a small change of the resting potential to an excitation of the cell can be
achieved.



Figure 2. Initiation of  action impulse by stretch of  sarcomere.  The cell  is  excited by
applying a stimulus current at t  = 1 s. At t = 2 s a mechanical stretch of 5 ms was
performed delivering a sarcomere length SL from 2 to 2.9 μm. The default length of the
sarcomere is 2 μm,

Also the model  includes  electro-mechanic feedback,  which  is  discussed  in the following
section, and the influence of neurotransmitters (ACh).

Modeling of Force Development

The development of force in the contractile elements of myocytes is provoked by an increase
of the concentration of intracellular calcium [Ca]i. The progression of the force is modulated
by the progression of the concentration [Ca]i. Commonly, the increase of the concentration
[Ca]i is  a  result  of  an  electrical  excitation.  The  progression  of  the  electrical  excitation
influences the progression of the force development (electro-mechanic feedback).

Therefore, many models of cellular force development use the concentration [Ca]i to define
rate coefficients, which depict the interaction between states [25] [26] [27][28]. The states
describe eg the bounding of intracellular Ca2+ to the troponin complex and the cross-bridge
cycling. Further parameters influencing the rate coefficients are the sarcomere length and the
state variables.

TABLE 2. States of force models of cardiac cells.

state Tropomyosin No. of cross bridges
N0 non permissive 0
N1 non permissive 1
P0 permissive 0
P1 permissive 1

state Ca2+ bounding to Troponin
T no
TCa yes

Rice-Winslow-Hunter Model

A foundation of this work are the Rice-Winslow-Hunter models of cardiac muscle [27]. As
an example of  the  modeling  a  short  description  of  the 3rd  model  is  given.  This model



consists  of  6  states,  N0,  N1,  P0,  P1,  T,  and  TCa  with  N0 +  N1  +  P0  +  P1 =  0  and
T + TCa = 0 (see Table 2). The interaction between the states of the model is described by a
system of 1st order differential equations:

 δ 
δt

N0
N1
P0
P1
T

TCa

= R

N0
N1
P0
P1
T

TCa

with  the 6  ×  6  matrix  R  consisting  of  rate  coefficients.  Partly,  the  rate  coefficients  are
dependent on the sarcomere length SL and the Cai concentration. The normalized force F is
determined by

F = α(P1 + N1)
Fmax

with the sarcomere overlap function α = α(SL) and the maximal force Fmax. The states P1
and N1 are the force generating states.

Modeling of Excitation Propagation

Approaches

Figure 3. Modeling of electrical intercellular coupling. The myocytes are coupled via
gap junctions and through the extracellular space.

A propagation of electrical excitation from one cell to neighboring cells is primarily achieved
by intercellular transport of ions via the gap junctions. Also extracellular potentials resulting
from  the  electrical  activity  of  cells  or  from an  external  current  flow  can  modulate  the
propagation and initiate an excitation (Figure 3).

Two different classes of approximations of the excitation propagation in the myocardium can
be  distinguished:  microscopic  and  macroscopic  approaches.  The  macroscopic  approach
allows  the  combining  of  groups  of  cells  and  their  common  treatment.  In  contrast,
microscopic models at a cellular level split cells in components, which are separately treated.

In  the  last  years  different  approaches  for  the  macroscopic  excitation  propagation  were
developed:

Cellular automatons. Rules are included defining the time delay and the neighborhood



for the propagation [29] [30] [31] [32] [33] [34] [35].
Excitable dynamics equations or reaction diffusion systems [36][37][38].
Resistor  networks/monodomain  models.  These  models  incorporate  the  effect  of
coupling the intracellular space with gap junctions [39][40].
Bidomain  models.  Bidomain  models  are  an  extension  of  monodomain  models
including the effects of the extracellular space [41][42][43].

All these models allow the inclusion of anisotropic effects resulting from the orientation of
myocytes, eg by using conductivity tensors (see Appendix Electrical Conductivity Tensor).

Microscopic  models  deliver  information  concerning  the  stochastic  behavior  of  the
myocardium [44][45]. Anisotropic effects are implicitly included by the cell  geometry as
well as by the distribution and orientation of gap junctions.

Bidomain Model

The  bidomain  model  treats  the  electrical  behavior  of  tissue  in  two  domains,  in  the
intracellular  and  extracellular  space,  which  are  separated by  the cell  membrane.  In each
domain Poisson's equation for fields of stationary electrical current is fulfilled:

∇(σi∇ϕi) = βIm - Isi (1)

∇(σe∇ϕe) = βIm - Ise (2)

with  the  intracellular  potential  ϕi  ,  the  extracellular  potential  ϕe  ,  the  intracellular
conductivity tensor σi  ,  the extracellular  conductivity  tensor  σe  ,  the intracellular  current
source density Isi , the extracellular current source density Ise , and the surface to volume
ratio β of cells. The intracellular conductivity σi consists of conductivities for the intracellular
components and for the gap junctions. The domains are coupled by the current density Im
through the cell membrane.

Figure 4. Bidomain modeling of cardiac electrophysiology.

The  following  method  can  be  chosen  to  couple  the  bidomain  equations  with  the
electrophysiological  cell  models  (see Figure  4)  [46].  The  method bases  on  the  iterative
solving of Poisson's equation with numerical techniques:

Potentials are determined outgoing from current source densities.
Current sources are calculated outgoing from potentials.



Therefore, commonly the finite-difference or finite-element method is applied [47][48]. In a
first step the current source density Iim delivered by the transmembrane potential Vm = ϕi - ϕe
is determined:

∇(σi∇Vm) = Iim

In a second step the extracellular potential ϕe is calculated outgoing from the current source
density Iim :

∇((σi + σe) ∇ϕe) = Iim

The calculation of ϕe is  commonly numerically expensive, because the solving of a large
system of linear equations is necessary.

In  a  third  step  the  intracellular  source  density  Isi is  determined  and  delivered  to  the
electrophysiological cell model:

∇(σi∇Vm) + ∇(σi∇ϕe) = β (Cm
δVm
δt

– Iion) – Isi

The left side of this equation describes a current source density delivered by the intracellular
potentials:

∇(σi∇Vm) + ∇(σi∇ϕe) = ∇(σi∇(Vm + ϕe)) = ∇(σi∇ϕi)

Modeling of Mechano-Electrical Feedback

Figure 5. Modeling of Mechano-Electrical Feedback.



Overview
Knowledge concerning the influence of stretch and tension to the initiation and propagation
of  electrical  excitation,  and  to  the  force  development  in  the  heart  can  be  achieved  by
development  of  a  model,  which  combines  and  extends  the  presented  cellular
electrophysiological and propagation model. The model consists of

a single cell electrophysiological model with stretch dependent behavior
a single cell model of the force development with inclusion of stretch effects
an extended bidomain model taking stretch into account (see next section)
an elastomechanical model

The  interdependencies  of  the  different  data  are  depicted  in  figure  5.  As  an
electrophysiological model the modified Noble-Kohl-Varghese-Noble model is used. Stretch
dependent ion channels are included. The engaged force model is the Rice-Winslow-Hunter
model (type 3). The elastomechanical behavior is modeled by affine transformations and the
equations of Navier [49].

Extension of the Mono- and Bidomain Model

Figure 6. Coupling of myocytes with gap junctions and through the extracellular space.
The  deformation  of  a  region  changes  the  intra-  and  extracellular  conductivity.  The
resistor yielded by the gap junction is not changed.

In this paper an extension of the mono- and bidomain model is introduced, which allows to
take  the  deformation  of  tissue  into  account  (see  figure  6).  This  extension  delivers
conductivity tensors σi and σe for the intra- and extracellular space respectively, which follow
the rules of model assumptions.

In  principal  the  method  consists  of  extracting  the  stretch  of  regions  resulting  from  an
arbitrary deformation. The extracted stretch is used to construct a conductivity tensor in a
local  coordinate  system.  Different  weights  allow  to  choose  a  specific  behavior  of  the
conductivity. The local conductivity tensor is transformed in the global coordinate system.

Model Assumptions

In the following simulations a different behavior due to stretch of the extra- and intracellular
conductivity tensor is assumed:

The intracellular conductivity tensor σi is primarily influenced by the resistors Rgj of
the gap junctions. These resistors Rgj are stretch independent.
The  extracellular  space  behaves  like  an  incompressible  fluid.  The  extracellular
conductivity tensor σe is not influenced by stretch.



These physically motivated assumptions simplify the behavior of the conductivity tensors
and allow their efficient calculation.

Extraction of Stretch

The stretch of the myofibers in a voxel is determined by applying the deformation gradient
tensor  F  (see  Appendix  Deformation  Gradient  Tensor)  to  the  base  of  the  material
coordinate system M :

M' = FM

The base vectors of the material coordinate system M are the fiber orientation M x , the sheet
orientation M y , and the sheet normal M z :

M' = ( Mx | My | Mz )

The stretch sx, sy, and sz in direction of the fiber, the sheet and the sheet normal respectively
are the lengths of the transformed corresponding base vectors M'x , M'y , and M'z :

sx = √(M'x2)
sy = √(M'y2)
sz = √(M'z2)

Construction and Scaling of Conductivity Tensor

The conductivity tensor influenced by stretch in a local coordinate system is determined by:

σs,local =

(((sx/sysz) - 1)ax + 1)σx 0 0

0 (((sy/sxsz) - 1)ay + 1)σy 0

0 0 (((sz/sxsy) - 1)az + 1)σz

with  the conductivity  σx  in direction  of  the fiber,  σy  in direction  of  the sheet, and  σz  in
direction of  the sheet normal. The weighting parameters ax,  ay,  and az  allow to select  a
specific material behavior. For isovolumetric deformations, sxsysz = 1 the conductivity tensor
reduces to:

σs,local =

((s2x - 1)ax + 1)σx 0 0

0 ((s2y - 1)ay + 1)σy 0

0 0 ((s2z - 1)az + 1)σz



Figure  7.  Cube  and  deformed  cube.  The  undeformed  cube  is  parameterized  by  a
conductivity σ,  width w, height h, and depth d. The deformed cube's parameters are a
conductivity σ', width w', height h', and depth d'.

Examples for Weighting Parameters

To illustrate the influence of the weighting parameters, two cases are exemplary examined.
The examples base on a cube with a conductivity σ (in x-direction), a height h, a width w =
h, and a depth d = h. Hereby, the resistor R (in x-direction) of the cube is determined by

R =  1 
hσ

The cube is isovolumetric, transversal isotropic deformed with a stretch s, which delivers a
quader of width w' = hs, height h' = h/√s, and depth d' = d/√s. The conductivity of the quader
σ' is scaled with the weighting factor a to

σ' = ((s2 - 1)a + 1)

The resistor of the deformed cube R' is calculated by:

R' =    s2  
hσ'

 =              s2             
h((s2 - 1)a + 1)σ

Case 1: a = 0. The influence of stretch is inhibited:

R'a = 0  =   s2 
hσ

resulting in a quadratic dependency of a corresponding resistor with respect to the stretch.
Case 2: a = 1. The corresponding resistor is independent on stretch:

R'a =1  =   1 
hσ

Coordinate System Transformation

A polar decomposition of the deformation gradient tensor F delivers the rotation matrix RF,
which is needed in conjunction with the rotation of the material coordinate system RM to
construct a summary rotation matrix R:

R = RM RF

The summary rotation matrix R is applied to transform the conductivity tensor σs,local from
the local coordinate into the global coordinate system σs,global:

σs,global = Rσs,local RT



Results

Deformation Induced Changes of Propagation Velocity

Figure  8.  Lattice  for  determination  of  the  deformation  induced  changes  of  the
propagation velocity. A stimulus is applied at plane z = 1. The velocity is determined
outgoing from measurement of the transmembran voltage at the reading points P1 and
P2 .

Numerical experiments are performed to determine the deformation induced changes of the
propagation velocity.  Hereby, a lattice (see Figure 8) of  13 x 13 x  25 cubic voxels was
isovolumetrically deformed by a scaling matrix U:

sf 0 0

U = 0 st 0

0 0 st

The scaling factor in fiber direction sf ranges between 0.8 and 1.2. The transversal scaling
factor st is chosen to achieve isovolumetry. Depending on the calculation of the longitudinal
and transversal velocity the fibers have z- and y-direction, respectively. The initial size of a
voxel is 0.1 mm x 0.1 mm x 0.1 mm. An excitation was initiated by applying a sufficiently
large intracellular stimulus current at slice z = 1, which leads to a plane front of excitation
wandering in z-direction.

The velocity of the excitation propagation is calculated by usage of two reading points. The
excitation of a voxel is decided by defining a threshold to the transmembran voltage Vm. The
threshold value is set to 0 mV. The time delay between the first exceed at the reading points
is divided by their spatial distance:

v = 
tVm(P2)>0 – tVm(P1)>0
——————————

|P1 - P2|

The reading points P1 and P2 are located at the positions (6, 6, 15) and P2 = (6, 6, 19),
respectively.

Different environments are examined:

traditional  bidomain  model  and  stretch  independent  electrophysiological  model
(Stretch=0, SigmaStretch=0)
extended  bidomain  model  and  stretch  independent  electrophysiological  model



(Stretch=0, SigmaStretch=1)
traditional  bidomain  model  and  stretch  depended  electrophysiological  model  with
constant sarcomere length (Stretch=1, SL=2, SigmaStretch=0)
extended  bidomain  model  and  stretch  dependent  electrophysiological  model  with
constant sarcomere length (Stretch=1, SL=2, SigmaStretch=1)
traditional  bidomain  model  and  stretch  dependent  electrophysiological  model
(Stretch=1, SigmaStretch=0)
extended  bidomain  model  and  stretch  dependent  electrophysiological  model
(Stretch=1, SigmaStretch=1)

In the environments with the extended bidomain model (SigmaStretch=1)  the  weighting
factors ax , ay , and az , for the intracellular conductivity are set to 1. The weighting factors
for  the  extracellular  conductivity  are  set  to  0.  The  extra-  and  intracellular  conductivity
tensors are chosen according to [43].

The stretch  independent  electrophysiological  model  of  the first  and  second environment
(Stretch=0) is derived from the Noble-Varghese-Kohl-Noble model by setting the stretch-
activated  ion  conductances  to  0.  In  the  environments  with  the  stretch  dependent
electrophysiological model and non-constant sarcomere length (Stretch=1)  the sarcomere
length SL is scaled with sf.

Figure 9. Progression of the velocity of longitudinal propagation by variation of stretch
in  fiber  direction  sx.  Different  environments  with  isovolumetric  deformation  are
examined.



Figure 10. Progression of the voxel velocity of longitudinal propagation by variation of
stretch in fiber direction sx. Different environments with isovolumetric deformation are
examined.

Figure 11. Progression of the velocity of transversal propagation by variation of stretch
in  fiber  direction  sx.  Different  environments  with  isovolumetric  deformation  are
examined.



Figure 12. Progression of the voxel velocity of transversal propagation by variation of
stretch in fiber direction sx. Different environments with isovolumetric deformation are
examined.

The results of the numerical experiments, the calculated velocities of excitation propagation
influenced by stretch, are depicted in figure 9, 10, 11, and 12. Longitudinal and transversal
velocities are determined.
The  results  of  the  simulations  with  the  extended  bidomain  model  and  with  the  stretch
dependent  electrophysiological  model  are  significant  different  from the  results  with  the
traditional  bidomain  model.  The  tendency  of  decreasing  the  propagation  velocity  by
increasing the stretch in fiber direction observable with the traditional bidomain model is
inverted  with  the  extended  model.  The  influence  of  the  stretch  dependent
electrophysiological model is starting at a stretch larger than 1 and leads to an approximately
exponential  progression of  the propagation velocity in the selected range of  stretch.  This
effect is resulting from the raise of the resting potential by stretch with the consequence that
a smaller and therefore faster deliverable amount of electrical charge is sufficient to initiate
an excitation.

Deformation Induced Initiation of Excitation

The initiation of an excitation by stretch is simulated with the extended bidomain model and
the modified Noble-Varghese-Kohl-Noble stretch dependent model. The lattice includes 16 x
16 x 16 voxels. The initial size of a voxel is 0.1 mm x 0.1 mm x 0.1 mm. The conductivity
tensors are constructed to model an alignment of the fibers in x-direction.

The lattice is deformed by usage of Navier's equation [49]. The Lame coefficients are chosen
to assure the approximation of an isovolumetric deformation. The eight corners of the lattice
are fixed to their position. Forces are applied to the voxels at position (6,6,15),  (6,7,15),
(7,6,15), and (7,7,15) in negative x-direction.



Figure 13. Initiation of an electrical excitation in the myocardium by stretch. The surface
with  transmembran potential  equal  to  0  mV is  visualized  using  the Marching  Cube
Algorithm [50].

The forces act on the lattice until an excitation front is initiated (see Figure 13 and movie). At
first the excitation picks up only some cells near to the force sources. These cell receive the
largest  stretch.  This  small  group  of  cells  cannot  deliver  enough  charge  to  excite  their
neighbors.  After  further  acting  of  the  forces  a  sufficiently  large area is  excited  and an
excitation front is initiated. At the beginning the excitation front moves primarily in direction
of the fibers with only a small radial component. After reaching the border at plane 
the front wanders in radial direction. The excitation includes the complete lattice.

Electromechanics in the Ventricular Heart Wall
The electromechanics in a region of the ventricular heart wall is simulated with the classic
bidomain,  the  Noble-Varghese-Kohl-Noble  stretch  independent  and  the  Rice-Winslow-
Hunter force development model. The lattice includes 64 x 64 x 64 voxels. The size of a
voxel is 0.2 mm x 0.2 mm x 0.2 mm.

The  orientation  of  the  fibers  varies  from  the  subepicardial  to  the  subendocardial
myocardium.  An  angle  of  -70   is  assigned  for  the  orientation  at  the  ventricular
subepicardial myocardium, an angle of 70  at the subendocardial myocardium [1][2]. The
orientation  in  the  space  lying  in  between is  interpolated  outgoing  from these  boundary
conditions by iterative averaging [51].

A  modification  of  the  K+  depolarizing  current  Ito  of  the  electrophysiological  model  is
integrated. The current is contingent on the distance to the epicardial and endocardial border.
Three different regions are distinguished: subepicardial, midmyocardial, and subendocardial
[52].

The excitation of the heart wall is initiated at the subendocardial myocardium by applying
pointwise a sufficiently large intracellular current. The applying of current starts at apical
points modeling myocytes with connections to Purkinje fibers and wanders basal.



Figure  14:  Excitation  propagation  of  the  heart  wall.  The  progression  of  the
transmembran potential Vm in a three dimensional model of the ventricular free wall is
simulated. The excitation is initiated at endocardial points modeling myocyte-Purkinje
fiber connections.

Figure 15: Electrophysiology of the heart wall. The progression of the concentration
of intracellular calcium [Ca]i in a model of the heart wall is simulated and visualized
in combination with the transmembran potential Vm .



Figure  16:  Electromechanics  in  the  heart  wall.  The  progression  of  the  force
development in a model of the heart wall is simulated and visualized in combination
with the transmembran potential Vm and intracellular calcium concentration [Ca]i.

The excitation propagation in a ventricular free wall is described in Figure 14 and movie by
visualizing  the  transmembran  potential  Vm.  The  distribution  of  the  concentration  of
intracellular  calcium  [Ca]i  is  depicted  in  Figure  15  and  movie  in  conjunction  with  the
transmembran  potential  Vm.  The  developed  force  is  shown  in  Figure  16  and movie  in
conjunction  with  the  transmembran  potential  Vm  and  the  concentration  of  intracellular
calcium [Ca]i .

Conclusions
The  presented  model  describes  some  aspects  of  the  electromechanical  behavior  of  a
myocardial region. The model combines an electrophysiological, a force development and an
excitation propagation model. All of these models incorporate the effects of deformation of
the myocardium.

An extension of the traditional bidomain model for excitation propagation is proposed. The
extension  describes  the  stretch  dependency  of  the  conductivity  tensor  of  the  intra-  and
extracellular  space  and  is  constructed  outgoing  from physically  motivated  assumptions,
which simplify the behavior of the conductivity tensor. The extension makes usage of the
deformation gradient tensor, which is a foundation in the theory of continuums mechanics.

The performed simulations illustrate some effects of myocardial electromechanical behavior.
These effects are of great significance for the development of realistic models of the hole
heart.  The  extension  of  models  of  cardiac  excitation  propagation  allows  mechanical
interaction. This functionality is of importance eg for studying of cardiac arrhythmias and for
the computer aided planning of surgical interventions.
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Appendix

Deformation Gradient Tensor

The finite continuous medium Ω is deformed outgoing from the reference configuration R0 at
time t = 0 [53]. The following configurations Rt are defined at time t . The coordinates of a
point P in Ω are described at the reference configuration R0 by the vector X . At time t the
point's coordinates are:

x = x(X,t)

The deformation gradient tensor F  is defined by differentiating x(X,t) with respect to the
initial coordinates X :

F = 
δxi
δXj

 = 

 δx0 
δX0

 δx0 
δX1

 δx0 
δX2

 δx1 
δX0

 δx1 
δX1

 δx1 
δX2

 δx2 
δX0

 δx2 
δX1

 δx2 
δX2

The tensor  F  is  of second order.  It  converts an  elementary segment dX  of  the  reference
configuration R0 into a segment dx in the configuration Rt . The deformation gradient tensor
can be divided in a rotation tensor R and a right stretch tensor U :

F = RU

The right stretch tensor U can be represented by a diagonal matrix.

Electrical Conductivity Tensor

In a stationary electrical current field the current density J is coupled with the gradient of the
potential ϕ by the conductivity tensor σ:

J = – σ∇ϕ

Commonly in bioelectrical tasks an orthotrophy of the material properties is assumed. The
material properties are described by a symmetric conductivity tensor  of second order. It
has the following form in a local coordinate system:



σx 0 0

σlocal = 0 σy 0

0 0 σz

with a scalar conductivity σx in direction of x-axis, σy in direction of the y-axis, and σz in
direction of the z-axis. In the transversal isotropic case the diagonal element σy is equal to σz .
In the isotropic case all diagonal elements are equal: σx = σy = σz . Hereby, the tensor σ can
be substituted by a scalar conductivity.

Implementation

Figure 17. Implementation.

The  model  is  implemented  in  the  C++  programming  language  using  interprocess
communication mechanisms. The following data are kept in shared memory:

states of cellular electrophysiologic models
states of cellular force models
extracellular potentials
intra- and extracellular conductivity tensors
deformations
elastomechanic material parameters

The  program  can  take  advantage  of  multiprocessor  computers  with  shared  memory
architecture using OpenMP. The modules communicate via message passing. Semaphores
are used for synchronization of processes.



References
[1] D. D. Streeter, Jr.  and D. L. Bassett,  ``An engineering analysis of myocardial fiber orientation in  pig's  left  ventricle  in

systole,'' Anatomical Record, vol. 155, pp. 503-512, 1966.

[2] D. D. Streeter,  ``Gross morphology and fiber geometry  of the  heart,''  in Handbook of  Physiology:  The Cardiovascular
System (B. Bethesda, ed.), vol. I, pp. 61-112, American Physiology Society, 1979.

[3] I.  J.  LeGrice,  B. H. Smaill,  L.  Z.  Chai,  S. G.  Edgar,  J.  B.  Gavin, and P. J.  Hunter,  ``Laminar  structure  of  the  heart:
Ventricular myocyte arrangement and connective tissue architecture in the dog,'' Am J Physiol, vol. 269, pp. H571-H582,
1995.

[4] D. M. Bers, Excitation-Contraction Coupling and Cardiac Contractile Force.
Dordrecht, Netherlands: Kluwer Academic Publishers, 1991.

[5] J. E. Saffitz and K. A. Yamada, ``Gap junction distribution in the heart,'' in Cardiac Electrophysiology. From Cell to Bedside
(D. P. Zipes and J. Jalife, eds.), ch. 21, pp. 271-277, Philadelphia: W. B. Saunders Company, 1999.

[6] R. H. Hoyt, M. L. Cohen, and J. E. Saffitz, ``Distribution and three-dimensional structure of intercellular junctions in canine
myocardium,'' Circ Res., vol. 64, pp. 563-574, 1989.

[7] J. B. Caulfield and T. Borg, ``The collagen network of the heart,'' Laboratory Investigation, vol. 40, no. 3, pp. 364-372,
1979.

[8] C. Abrahams, J. S. Janicki, and K. T. Weber, ``Myocardial hypertrophy in macaca fascicularis: Structural remodeling of the
collagen matrix,'' Laboratory Investigation, vol. 56, pp. 676-683, 1987.

[9] K. T. Weber, Y. Sun, S.  C. Tyagi, and J. P. M. Cleutjens,  ``Collagen network of the  myocardium: Function, structural
remodeling and regulatory mechanisms,'' J Mol Cell Cardiol, vol. 26, pp. 279-292, 1994.

[10] A. L. Hodgkin and A. F. Huxley, ``A quantitative description of membrane current and its application to conduction and
excitation in nerve,'' J. Physiol, vol. 177, pp. 500-544, 1952.

[11] G. W. Beeler and H. Reuter, ``Reconstruction of the action potential of ventricular myocardial fibres,'' J. Physiol., vol. 268,
pp. 177-210, 1977.

[12]  D.  DiFrancesco and  D.  Noble,  ``A  model  of  cardiac  electrical  activity  incorporating  ionic  pumps  and  concentration
changes,'' Phil. Trans. R. Soc. Lond., vol. 307, pp. 353-398, 1985.

[13] Y. E. Earm and D. Noble, ``A model of single atrial cell: Relation between calcium current and calcium release,'' Proc. R.
Soc. Lond., vol. 240, pp. 83-96, 1990.

[14] C.-H. Luo and Y. Rudy, ``A model of the ventricular cardiac action potential,'' Circ Res., vol. 68, no. 6, pp. 1501-1526,
1991.

[15] C.-H. Luo and Y. Rudy, ``A dynamic model of the ventricular cardiac action potential: I. simulations of ionic currents and
concentration changes,'' Circ Res., vol. 74, no. 6, pp. 1071-1096, 1994.

[16] C.-H. Luo and Y. Rudy, ``A dynamic model of the ventricular cardiac action potential: II. afterdepolarizations, triggered
activity, and potentiation,'' Circ Res., vol. 74, no. 6, pp. 1097-1113, 1994.

[17] S. S. Demir, J. W. Clark, C. R. Murphey, and W. R. Giles, ``A mathematical model of a rabbit sinoatrial node cell,'' Am. J.
Physiol., vol. 35, pp. 832-852, 1994.

[18] S. S. Demir, B. O'Rourke, G. F. Tomaselli, E. Marban, and R. L. Winslow, ``Action potential variation in canine ventricle:
A modeling study,'' in Proc. Computers in Cardiology, pp. 221-224, 1996.

[19] A. Nygren, C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad, R. B. Clark, and W. R. Giles, ``Mathematical model of an adult
human atrial cell,'' Circ Res., vol. 82, pp. 63-81, 1998.

[20] D. Noble, A. Varghese, P. Kohl, and P. Noble, ``Improved guinea-pig ventricular cell model incorporating a diadic space,
${I}_{Kr}$ and ${I}_{Ks}$, and length- and tension-dependend processes,'' Canadian Journal of Cardiology,  vol. 14,
pp. 123-134, Jan. 1998.

[21] M. S. Jafri, J. J. Rice, and R. L. Winslow, ``Cardiac ${C}a^{2+}$ dynamics: The roles of ryanodine receptor adapation and
sarcoplasmic reticulum load,'' Biophysical J, vol. 74, pp. 1149-1168, Mar. 1998.

[22] R. L. Winslow, J. J. Rice, S. Jafri, E. Marbán, and B. O'Rourke, ``Mechanisms of altered excitation-contraction coupling in
canine tachycardia-induced heart failure, II model studies,'' Circ. Res., vol. 84, pp. 571-586, 1999.

[23]  B.  O'Rourke,  D.  A.  Kass,  G.  F.  Tomaselli,  S.  Kaab,  R.  Tunin,  and E.  Marban,  ``Mechanisms of  altered  excitation-
contraction coupling in canine tachycardia-induced heart failure, I experimental studies,'' Circ Res, vol. 84(5), pp. 562-570,
1999.

[24] E. White, J.-Y. L. Guennec, J. M. Nigretto, F. Gannier, J. A. Argibay, and D. Garnier, ``The effects of increasing cell length
on  auxotonic  contractions;  membrane  potential  and  intracellular  calcium  transients  in  single  guninea-pig  ventricular
myocytes,'' Experimental Physiology, pp. 65-78, 1993.

[25] A. Landesberg and S. Sideman, ``Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac
cells,'' American Journal of Physiology, vol. 266, pp. H1260-H1271, 1994.
Heart Circ. Physiol. 35.



[26] A. Landesberg and S. Sideman, ``Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge
cycling: A dynamic model,'' American Journal of Physiology, vol. 267, pp. H779-H795, 1994.
Heart Circ. Physiol. 36.

[27] J. J. Rice, R. L. Winslow, and W. C. Hunter, ``Comparison of putative cooperative mechanisms in cardiac muscle: length
dependence and dynamic responses,'' Am. J. Physiol. Circ. Heart., vol. 276, pp. H1734-H1754, 1999.

[28] J. J. Rice, M. S. Jafri, and R. L. Winslow, ``Modeling short-term interval-force relations in cardiac muscle,'' Am. J. Physiol.
Circ. Heart., vol. 278, pp. H913-H931, 2000.

[29]  W.  J.  Eifler  and R.  Plonsey,  ``A  cellular  model  for  the  simulation  of activation  in  the  ventricular  myocardium,''  J.
Electrocardiology, vol. 8, no. 2, pp. 117-128, 1975.

[30] R. Killmann, P. Wach, and F. Dienstl, ``Three-dimensional computer model of the entire human heart for simulation of
reentry and tachycardia: Gap phenomenon and Wolff-Parksinson-White syndrome,'' Basic Research in Cardiology, vol. 86,
no. 5, 1991.

[31] B.  E. H. Saxberg and R. J.  Cohen, ``Cellular automata models of cardiac  conduction,''  in  Theory of Heart  (L. Glass,
P. Hunter, and A. McCulloch, eds.), pp. 437-476, Berlin, Heidelberg, New York: Springer, 1991.

[32] D. Wei, O. Okazaki, K. Harumi, E. Harasawa, and H. Hosaka, ``Comparative simulation of excitation and body surface
electrocardiogram with isotropic and anisotropic computer heart models,'' IEEE Transactions on Biomedical Engineering,
vol. 42, pp. 343-357, Apr. 1995.

[33] P. Siregar, J. P. Sinteff,  M. Chahine, and P. L. Beux, ``A cellular automata model of the heart and its coupling with a
qualitative model,'' Computers and Biomedical Research, vol. 29, pp. 222-246, 1996.

[34] C. D. Werner, F. B. Sachse, and O. Dössel, ``Applications of the visible man dataset in electrocardiology: Simulation of the
electrical excitation propagation,'' in Proc. Second Users Conference of the National Library of Medicine's Visible Human
Project, 1998.

[35] P. Siregar, J. P. Sinteff,  N. Julen, and P. L. Beux, ``An interactive 3D anisotropic cellular automata model of the heart,''
Computers and Biomedical Research, vol. 31, pp. 323-347, 1998.

[36]  R.  A.  FitzHugh,  ``Impulses  and  physiological  states  in  theoretical  models  of  nerve  membran,''  Biophys  J,  vol.  1,
pp. 445-466, 1961.

[37] J. M. Rogers and A. D. McCulloch, ``A collocation-Galerkin finite element model of cardiac action potential propagation,''
IEEE Transactions on Biomedical Engineering, vol. 41, pp. 743-757, Aug. 1994.

[38]  A. V. Panfilov,  ``Three-dimensional wave propagation  in  mathematical models  of ventricular fibrillation,''  in  Cardiac
Electrophysiology. From Cell to Bedside (D. P. Zipes and J. Jalife, eds.), ch. 31, pp. 271-277, Philadelphia: W. B. Saunders
Company, 1999.

[39] Y. Rudy and W. Quan, ``Mathematical model of reentry of cardiac excitation,'' in Computers in Cardiology, pp. 135-136,
1989.

[40]  N. Virag,  O. Blanc,  J.  M. Vesin,  J.  Koerfer,  and  L. Kappenberger,  ``Study of  the  mechanisms  of  arrhythmias in  an
anatomical computer model of human atria,'' in Proc. Computers in Cardiology, pp. 113-116, 1999.

[41]  C.  S.  Henriquez and  R.  Plonsey,  ``A  bidomain  model  for  simulating  propagation  in  multicellular  cardiac  tissue,''  in
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,  vol. 4,
p. 1266, 1989.

[42]  N.  G.  Sepulveda  and  J.  P.  Wikswo,  ``Bipolar  stimulation  of  cardiac  tissue  using  an  anisotropic  bidomain  model,''
Cardiovascular Electrophysiology, vol. 5, pp. 258-267, May 1994.

[43] C. S. Henriquez, A. L. Muzikant, and C. K. Smoak, ``Anisotropy, fiber curvature and bath loading effects on activation in
thin  and  thick  cardiac  tissue  preparations:  Simulations  in  a  three-dimensional  bidomain  model,''  J  Cardiovascular
Electrophysiology, vol. 7, pp. 424-444, May 1996.

[44] M. S. Spach and J. F. Heidlage, ``The stochastic nature of cardiac propagation at a microscopic level,'' Circ. Res., vol. 76,
no. 3, pp. 118-130, 1995.

[45] M. S. Spach, J. F. Heidlage, and P. C. Dolber, ``The dual nature of anisotropic discontinous conduction in the heart,'' in
Cardiac Electrophysiology. From Cell to Bedside (D. P. Zipes and J. Jalife, eds.), ch. 25, pp. 213-222, Philadelphia: W. B.
Saunders Company, 1999.

[46] N. Hooke, C.  S.  Henriquez, P. Lanzkron, and D. Rose, ``Linear algebraic transformations of the bidomain equations:
Implications to numerical methods,'' Crit Rev Biomed Eng, vol. 120, pp. 127-145, 1992.

[47] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C.
Cambridge, New York, Melbourne: Cambridge University Press, 2 ed., 1992.

[48] K.-J. Bathe, Finite Element Procedures in Engineering Analysis.
Englewood Cliffs/NJ: Prentice Hall, 1982.

[49] Y. C. Fung, Biomechanics: Motion, Flow, Stress and Growth.
New York, Berlin, Heidelberg: Springer, 1990.

[50] W. E. Lorensen and H.  E. Cline, ``Marching cubes: A high resolution 3D surface construction algorithm,''  Computer
Graphics, vol. 21, no. 4, pp. 163-169, 1987.

[51] F. B. Sachse, M. Wolf, C. Werner, and K. Meyer-Waarden, ``Extension of anatomical models of the human body: Three



dimensional  interpolation  of  muscle  fiber  orientation  based  on  restrictions,''  Journal  of  Computing  and  Information
Technology, vol. 6, no. 1, pp. 95-101, 1998.

[52]  D.-W.  Liu,  G.  A.  Gintant,  and  C.  Antzelevitch,  ``Ionic  bases for  electrophysiological  distinctions  among  epicardial,
midmyocardial,  and endocardial myocytes from the free  wall  of the  canine left  ventricle,''  Circ Res.,  vol.  72,  no.  3,
pp. 671-687, 1993.

[53] W. Maurel, Y. Wu, N. Magnenat Thalmann, and D. Thalmann, Biomechanical Models for Soft Tissue Simulation.
Berlin: Springer, 1998.

Official journal of the International Society for Bioelectromagnetism


