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Abstract. Biophysically detailed models of the electrical activity of single cardiac cells are modular,
stiff,  high  order,  differential  systems  that  are  continually  being  updated  by  incorporating  new
formulations for ionic fluxes, binding and sequestration. They are validated by their representation of
the ionic flux and concentration data they summarise, and by their ability to reproduce cell action
potentials, their  stability to perturbations, structural stability and robustness. They can be  used to
construct  discrete  or  continuous,  one-,  two-  or  three-dimensional  virtual  cardiac  tissues,  with
heterogeneities,  anisotropy  and  realistic  cardiac  geometry.  These  virtual  cardiac  tissues  are  being
applied to understand the propagation of excitation in the heart, provide insights into the generation
and  nature  of  arrhythmias,  aid  the  interpretation  of  electrical  signs  of  arrhythmia,  to  develop
defibrillation and antiarrhythmic strategies, and to prescreen potential antiarrhythmic agents.
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Introduction
The computational modelling of electrical activity in the heart has provided a quantitative,
detailed description of normal activity, and is being applied to understand cardiac arrythmias,
and to evaluate methods for their control or prevention. Cell excitation is described by stiff,
high  order  systems  of  ODES  that  have  and  are  being  obtained  from  voltage  clamp
experiments on single cells and membrane patches.  Cell  models can be coupled to form
tissue models, either in discrete space (coupled ODE lattice models) or as partial differential
systems of  the reaction  diffusion  type.  These  are  heterogeneous,  both  in  the  sense  that
different cell types can be intermixed in the same tissue (\eg\ fibroblasts and pacemaker cells
in the sinoatrial node), and regional differences in cell parameters (say endo- to epicardial
changes  in  action  potential  shape  prodiced  by  quantitative  changes  in  membrane  ionic
conductance parameters).  Cardiac tissue is anisotropic,  with propagation  faster  along the
fibre  axis:  homogeneous  aniostropy  can  be  removed  by  coordinate  transformation,  but
rotational anisotropy cannot. Quantitative models for cardiac geometry and anisotropy exist
(for the canine ventricles), and are being developed (for the pig and human atria). Thus the



investigation of propagation and its disorders is highly computational, and has developed in
close  parallel  with  the  avilablity  of  adequate  computing  power.  Since  cell  models  are
continually being updated by the incorporation of new results these computational models
need to be highly modular, so individual components can be unplugged and updated.

Modern cellular electrophysiology has provided quantitative descriptions, for different types
of  cardiac  muscle  cells  of  different  species,  of  membrane  ionic  currents,  pumps  and
exchange mechanisms that  have been combined with intracellular  and  extracellular  ionic
accumulation, depletion and sequestration processes to form biophysically detailed models of
membrane excitation [1]. These models, in the form of high order (a large number of state
variables), stiff (time scales ranging from fractions of a ms to hundreds of ms) differential
systems may be integrated to produce numerical solutions that reproduce currents seen under
voltage clamp, or membrane potential time series recorded from single cells. Models for cells
from different parts of the heart - the sinoatrial node, atrium, atrio-ventricular node, Purkinje
fibres  and ventricular  cells  -  have different action  potential  characteristics,  generated by
quantitatively different but qualitatively similar mechanisms. Any single cardiac muscle cell
can  be  modelled  by  a  system  of  ion-selective  conductances  with  voltage-dependent
activation and inactivation processes, ionic pumps and exchangers, together with intracellular
and extracellular ionic sequestration, depletion and binding as differential system:

 dV/dt = -I(V,gn )/C

 dgn /dt = G(V,gm)

 n,m = 1,...,N

where  C  is  the  cell  capacitance,  V is  the  transmembrane  voltage,  I  the  transmembrane
current, the variables gn that describe the state of a cell (gating variables for the different
ionic channels, ionic concentrations in different compartments) and the functions G describe
their dynamics. The apparent simplicity of this description hides its complexity: N can be
large  (e.g.  N=17 for  the  guinea pig  ventricular  cell  models  [2]  used  below,  and  it  also
contains a  large number of parameters (e.g. maximal conductances,  ionic  concentrations,
reversal potentials), some of which are based on experimental estimates, and some of which
have been chosen to satisfy some constraint. For  the cell model to have a  stable resting
potential (a solution such that dV/dt =0) the resting state is electrically neutral i.e.  charge
entry and exit via channels,  pumps and exchangers is balanced.  However, an electrically
model need not be chemically neutral - unless the entry and exit rates of each ionic species
are balanced there will be slow changes in intra- and extra-cellular ionic concentrations with
time.  Cell  models  and  their  parameter  values  have  been  constructed  primarily  from
electrophysiological experimental data from different sources, obtained by different methods,
and usually obtained by protocols with a time scale of one to a few hundred ms. They are
usually not chemically neutral and so the valid time scale for cell models (and tissue models
derived from them) is only of the order of seconds: over longer time scales there are slow
changes in the variables representing concentrations that produce artefactual behaviours.

The variety  of  different  cell  models,  and  the  alternative  models  for  the  same  cell  type,
combined  with  their  common  basic  structure,  suggests  a  modular  approach  in  which  a
particular  cell  model  is  specified  by  a  set  of  modules  that  represent  the  ionic  transfer
mechanisms (ion-selective,  voltage dependent channels;  pumps and exchangers),  together
with  binding  and  sequestration  mechanisms  (e.g.  Ca++-  binding  by  phospholamban,
calmodulin). Each of these mechanisms corresponds to a protein or protein complex, and so
will be able to be mapped onto the proteome. Each mechanism has its associated magnitude
(corresponding  to  its  membrane  density  or  intracellular  concentration),  and  dynamics,
represented by a normal range of parameter values. These parameter values differ between
different models,  and can be modified to represent the effects of  changes in the cellular
environment (e.g. temperature, via the Q10 of rate coefficients), pharmacological agents (e.g.



see  [3]  for  examples  of  channel  blockers)  or  mutations  in  genes  expressed  as  cardiac
channels (e.g. see Meander in LQT syndromes below). Thus a specific model of a normal
or abnormal cell can be assembled from a set of modules and parameters, as in the Oxsoft [4]
package. As yet, there is no public domain package that would provide cellular cardiology
with an equivalent to what GENESIS [5 ] provides cellular neurophysiology.

The excitation equations for all cardiac muscle cells are high order and complex, with a large
number of variables and parameters. Vertebrate axonal excitation equations have less than
four  dynamic variables  controlling  two conductances,  while  cardiac  excitation  equations
typically have about 20 dynamic variables controlling about a dozen conductances. From the
computational viewpoint, this raises practical problems, as there are few published models
that are without typographical errors, and so ensuring that a program actually codes a given
model and accurately specifying that model, is not as straightforward as it should be. From
the functional viewpoint, the complexity of cardiac excitation may just be an illustration of
the "baroque" nature of biology, as for excitability and autorhythmicity only two variables
are necessary, and for the rate dependent changes in action potential duration that are mapped
as electrical restitution curves only three variables are required. However, the mechanisms of
cardiac excitation has not been sculptured but have evolved, and the complexity may give
cardiac  excitation  a  robustness  to  changes  in  parameters.  In  spite  of  homeostatic
mechanisms, life threatening changes in the internal environment , such as fever, changes in
pH, and osmolarity do occur as part of the trials of life, and the complexity of the cardiac
excitation mechanisms might provide  a  robustness  of  behaviour  -  a  persistence  of  sinus
rhythm- in the face of these large fluctuations in parameters.

A virtual  tissue can be constructed by coupling together cell  models, either in a  discrete
representation, as a lattice of coupled cells, or in a continuous representation, as a system of
partial  differential  equations  of  the  reaction-diffusion  form,  where  the  "reaction"  term
represents the nonlinearities of membrane excitation and the diffusive term the electrotonic
spread of potential with distance through the cardiac tissue.

Such a virtual  tissue can be used to understand the physiology of propagation in cardiac
tissue - for example, propagation during the normal sinus rhythm is often from tissue with
longer to tissue with shorter action potential duration, as from the centre to the periphery in
the sino-atrial node [6] and from the endocardial to epicardial surfaces of the ventricular wall
[7], so the depolarisation wavefront propagates "orthodromically", while the repolarisation
waveback  collapses  "antidromically".  A  consequence  is  that  re-entrant  propagation  is
prevented.

Failure  of the rhythmic pumping of the heart produced by the arrhythmias of ventricular
tachycardia and fibrillation is not only a major cause of death, but is a terminal event in
almost all non-violent deaths. Most of these deaths are premature, both in the sense that the
probability  of  occurrence  of  a  vascular  insult  to  the  myocardium  triggering  a  lethal
arrhythmia can be reduced by appropriate dietary and activity regimes, and that potentially
lethal arrhythmias can be terminated by defibrillatory interventions if they are applied soon
enough.  Virtual  tissues  can  be  used  to  understand  the  mechanisms  of  initiation  and
persistence of arrhythmias, to explore the phenomenology and methods of defibrillation, and
to design or prescreen antiarrhythmic agents.

Below we illustrate the use of  virtual  cardiac tissue in understanding and controlling re-
entrant  ventricular  arrhythmias,  by  considering  case  studies of  ventricular  re-entry,  LQT
syndromes,  resonant  drift  as  a  strategy  for  low-voltage  defibrillation,  the  behaviour  of
weakly excitable tissue, bidomain models and virtual electrode effects in defibrillation, and
three dimensional aspects of ventricular fibrillation.



Methods
Cardiac tissue is  spatially extended,  and  the description of  propagation and its  disorders
requires models of cardiac tissue as an excitable medium. The study of wave propagation in
`reaction-diffusion'  models  of  excitable  media,  i.e.  considering  tissue  as  a  continuous
syncytium,  has  already contributed  to  the  understanding  of  many phenomena  related  to
cardiac electrophysiology and has been done mostly in one-, two-  and three dimensional
models  of  excitable  media  with  simplified  kinetics.  Extensive  exploration  of  two-
dimensional media or three-dimensional media with biophysically realistic kinetics has only
recently become possible. The study of three-dimensional cardiac tissue models with realistic
kinetics  and anisotropy is  only  just  becoming possible.  The  problem with  biophysically
realistic models is their stiffness, i.e. wide range of characteristic time and space scales: from
tens  of  microseconds  to  hundreds  of  milleseconds  and  from  tens  of  micrometers  to
centimetres, thus the computational cost of straightforward approaches is enormous. We are
developing multigrid or restructurable grid schemes to reduce this load.

Granularity

`Reaction-diffusion'  approaches  to  cardiac  tissue  cannot  in  principle  describe  some
experimental phenomena. One example is the anisotropic vulnerability [8] , the phenomenon
of different minimal period of propagating waves depending on the direction of propagation,
which is impossible in continuous homogeneously anisotropic reaction-diffusion system (it
is, however, explainable in the bidomain theory, see below). An obvious way to allow for this
sort  of phenomena is to consider each particular cell, i.e.  describe the tissue in terms of
coupled  ordinary  differential  equations  (CODE)  as  in  [9]  rather  than  partial  differential
equations  (PDE).  In  certain  situations  this  can  be  avoided  by  using  phenomenological
interval-velocity  relationships  accounting  for  the  cellular  structure  [10];  this  approach
deserves further study.

Anatomy

Digitized anatomical data describing the canine heart (ventricles) including fibre orientation
are  available  [11],  and  such  models  have  already  been  used  in  pilot  simulations  with
simplified kinetics. Early studies of propagation in realistic tissue geometries in mesoscopic
[12] and macroscopic [13 14] scales were all done with simplified reaction-diffusion models.
Incorporating  ``rotational  anisotropy''  within  this  approach  does  not  meet  any  serious
difficulties, as all that is required is using a conductivity tensor instead of isotropic diffusion
of potential. To date computations of propagation in anatomically realistic models of cardiac
tissue have been in a static geometry; and propagation phenomena in a moving medium is
beginning to be approached, using phenomenological models [15 16 ].

Bidomain equations of cardiac tissue

Cardiac tissue can be considered as consisting of two domains: the interiors of the cells,
which are electrically connected by Ohmic gap junctions, and the common exterior, the two
domains  being  separated  by  the  cell  membranes,  where  the nonlinear  nature  of  cardiac
excitability is localised.  The currently prevailing viewpoint is  that  the distribution of  the
electric  potential  in  each of  the domains  is  normally  more or  less smooth.  This enables
averaging of the conductivity properties within each of the domains over the cellular scale.
This averaging leads to the description  of  the excitation propagation  in  terms of  a  PDE
system, which can be written as a system of local equations for the transmembrane voltage E
and local excitation variables (channel gates, ionic concentrations etc), and elliptic equation
for the extracellular potential :
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is transmembrane current, gi are local variables and  is cardiocyte surface/volume ratio.

The key parameters of these equations are the conductivity tensors σi and σe ,  of the two
domains,  interior  and  exterior.  If  the corresponding components of  the two conductivity
tensors relate to each other by a constant factor, the elliptic equation degenerates, and the
system is reduced to the parabolic equation, the "monodomain" or "cable" theory (which can
be also obtained in the limit if one of the conductivity tensor is infinitely large) - see [17 18
19 20]  and  references  therein.  In  general,  both  the  equations  for  external  potential  and
transmembrane voltage (or equivalently, external and internal potentials) should be solved
simultaneously, and this difference from the monodomain theory provides specific features
of excitation propagation, like the non-elliptic shape of the waves from a point source and
anisotropic dispersion (velocity-rate) relationship. Another, qualitatively important feature of
the bidomain equations is that they describe the relationship between external electric field
and  the  distribution  of  the  transmembrane  potential,  which  is  important  both  in  the
interpretation  of  electrocardiographs  and  for  electrical  stimulation  and  defibrillation
technology.  Computational approaches for  the bidomain equations vary,  and include e.g.
spectral methods [18], method of Green functions [19] and alternating directions [20]. The
first  two are  applicable  in  the  case of  spatial  uniformity  of  the conductivity  tensors  (in
particular, a constant direction of the fibres) and are therefore of limited interest. The AD
method is applicable to the regular rectangular grids and can therefore only be considered as
a starting point, or as an interim procedure in a multigrid approach. An appropriate iteration
procedure for  resolving  the  elliptic  equation,  that  can  be reformulated  as  a  sequence of
explicit steps, and can therefore be applied to the multigrid tree and will allow parallelization
(see  below).  Due  to  the  disproportion  of  characteristic  times,  the  description  of  the
distribution of transmembrane voltage and fastest membrane variables over the membrane of
one cell can be successfully reduced to a low-dimensional O.D.E. [21] , and so the effects of
membrane parameters on defibrillation thresholds can readiliy be computed.

The trimmed-tree multigrid approach

In  computation  with  regular  grids,  the  time  and space resolution  are  determined by  the
temporal  and  spatial  scales  of  the  excitation  front,  of  the  order  of  1  msec  and 1  mm
respectively,  which require  corresponding computational steps  to  be  at  least  of  order  of
magnitude less, whatever the requirements of precision or stability. On the other hand, this
resolution  is required  only  at  the fronts,  and  away from the  fronts  both time and space
variations are quite smooth and much larger steps could be acceptable. The idea is to use
small  steps at  the fronts and large steps away from it.  Since the geometry and even the
topology of the fronts is varying not only from experiment to experiment, but even in the
course of one experiment (and, in a sense, such topological deformations are one of the most
principal issues of the theory, as they correspond to birth or death of re-entry waves), all the
computational approaches which make any assumptions on these fronts are not acceptable.
We use the idea of a trimmed quadtree representation, widely used in image representation
technology. The 2D medium is split onto square cells, and if the variation of the dynamic
field within one cell exceeds a certain value, this cell is split onto four children cells. This
process is repeated iteratively until variation of the field within every cell is less than the
adopted criterium. As the front propagates, the cells it approaches should split and the cells
behind it may join together again. This idea obviously extends to 3D.



Figure 1: A multigrid with 6 resolution layers (left) built to approximate a stiff spiral
wave wave solution (right). The number of nodes is 30 times less than that required by a
regular grid with the same accuracy.

This approach is illustrated in Figure 1. In practice, we use not a tree, but a forest, with roots
arranged  in  a  regular  grid  of  small  size  (16x16 for  the example  shown on the  figure),
implemented as a dynamic structure. For models with biophysically realistic kinetics, the
main computational load (typically no less than 95%) is on the local step,  which can be
performed absolutely independently for all computational cells, thus making this approach
perfectly  parallelizable,  with  the  maximal  potential  degree  of  parallelization  being  the
number of computational cells. As for the non-local step, it is also parallelizable if explicit
schemes are used. The stiffness of cardiac excitable kinetics imposes severe restrictions on
the  time  step  at  the  front  anyway,  so  explicit  schemes  for  the  non-local  part  may  be
acceptable in many practical situations, including bidomain equations, if relaxation method
can be accepted for resolving the elliptic equations.

Results

Propagation phenomena in one-dimensional virtual tissues

The  reaction-diffusion  equation  in  one  dimension  has  a  spatially  uniform  solution,
corresponding to resting tissue, and can support solitary wave and wave train solutions. The
solitary travelling wave solution propagates at a velocity proportional to the square root of
the diffusion coefficient, and so the diffusion coefficient can be chosen to give appropriate
length  and  velocity  scaling,  or  can  be  obtained  from estimates  of  cell  to  cell  coupling
conductance. The velocity of travelling wave solutions is rate-dependent.

Two  travelling  wave  solutions  meeting  head  on  collide  and  annihilate  each  other;  this
destructive interference results from the refractory period of  the travelling waves.  Supra-
threshold stimulation at a point in a uniformly resting one-dimensional model produces a pair
of travelling wave solutions that propagate away from the initiation site. The initiation of a
single solitary wave in a one-dimensional ring provides a computationally simple model for
re-entry;  such  unidirectional  propagation  can  only  be  produced in  a  homogeneous  one-
dimensional medium if the symmetry is broken, say by a preceding action potential. The
vulnerable  window  is  the  period  after  a  preceding  action  potential  during  which  a
unidirectional wave in a one dimensional medium can be initiated; stimulation during the
vulnerable period in the wake of a plane wave in a two-dimensional medium would initiate a
pair of spiral waves.

The length of the vulnerable window increases with stimulus intensity and with the length of
the  stimulated  tissue  (the  electrode  size).  If  the  effects  of  pharmacological  agents  or
pathological processes (ischaemia, acidosis) can be expressed as changes in the excitation



system then estimating the vulnerable window provides a means of quantifying the pro- or
anti-arrhythmogenic  effects  of  these  changes.  An  increase  in  the  size  of  the  vulnerable
window increases the likelihood of re-entry being triggered: this is found for Na+-channel
blockers [22 ] and so can account for the pro-arrhythmogenic effects of the agents used in the
CAST trials [23].

Re-entry in a two-dimensional ventricular virtual tissue

The generalisation of a solitary wave and a wave train in a two dimensional medium is a
plane wave and plane wave train. Since cardiac cells are cylindrical, and organised in sheets,
propagation in cardiac tissue is anisotropic, with the velocity being faster parallel to the fibre
axis.  In homogeneous  anisotropic  cardiac tissue the "wavelength" of  the action potential
changes  with  its  direction  of  propagation.  For  isotropic  virtual  tissue  repetitive  focal
excitation will generate a circular wave train, the ellipsoid propagation pattern seen in real
cardiac tissue can be produced simply by a simple co-ordinate transformation. The normal
velocity V of a wavefront is also dependent on its curvature k: V = V0 -Dk, where D is the
effective diffusion coefficient. The dependence of velocity on rate, and on curvature, allows
rotating spiral wave solutions.

A spiral wave in a two-dimensional, homogeneous, isotropic medium provides a model for
re-entry. Spiral waves rotate around a central area of conduction block, or core, and may be
characterized by their period of rotation, size of core, and movement of the tip of the spiral.
At any specified instant in time the spiral wave has a location (given by the position of its
tip), and a spatial orientation of rotation phase. The tip can rotate rigidly around a circular
core, whose radius increases as excitability decreases, or meander bi-periodically [24 25 26].
For isotropic atrial virtual tissue, the spiral wave initially rotates rigidly, around a circular
core, with a period of 73 ms [27]. As the spiral wave ages the period increases to 84ms over
5 s, and the size of the core increases and the tip begins to meander [28]. The period of the
spiral wave is close to the period of atrial flutter.

For isotropic ventricular virtual tissue, the spiral wave illustrated in Figure 2 rotates with a
period of initially 170 ms, that decreases over a second to 100-110 ms. The motion of the tip
is not circular, but meanders, moving by a jump-like alternation between fast and very slow
phases, with about five jumps per full rotation of the spiral.

Figure 2:  Spiral  wave solution for  ventricular tissue model.  The intersection  of  two
isolines (for V = -10 mV, and the Ca++-inactivation variable f = 0.5) defines the position
of the tip (blue ball) whose trajectory appears as the white curve. [2]



The multi-lobed meander of the ventricular tissue model we use, that has extended linear
segments separated by sharp corners, has been accounted for in terms of the two time courses
of the two principal depolarising currents. Propagation of the re-entrant spiral, or of a wave
around  an  extended  linear  obstacle,  alternates  between  being  driven  predominantly  by
sodium and calcium currents.  Modification of the ratio of the time courses of these two
currents can extend the near- linear segments of meander. If these near-linear segments are of
the same length as the distance to an inexcitable boundary of the medium then the meander
of a re-entrant wave would lead to its self termination by moving its tip to an inexcitable
boundary.  This mechanism might  provide an  explanation for  ventricular  tachycardia  that
manifests itself as syncope, and for episodes of self-terminating fibrillation observed when
the electrocardiogram is being continually monitored, as in intensive or coronary care units
[29].

LQT syndromes: meander, self-termination and lethality.

Inherited LQT syndromes are  associated with increased risk of re-entrant arrhythmia and
result from mutations in genes expressed as cardiac Na+- and K+ - channel subunits . These
mutations prolong ventricular action potentials and produce long Q-T (LQT) intervals in the
electrocardiogram. Arrhythmias occur more frequently in patients with LQT1 and LQT2,
associated with mutant K+- channels, yet are 5 times more likely to kill patients with LQT3,
associated with mutant Na+- channels [30]. We interpret this finding as a greater likelihood
of self-terminating re-entry in LQT1 and LQT2. The relative meander of re-entrant sources
in  these  three  phenotypes  is  consistent  with  clinical  outcome,  and  illustrates  that
computational functional genomics can provide insights into the whole organ consequences
of genetic abnormalities. The specific gene mutations each associated with an LQTS have
been identified [31 32]. Of these, LQT1 is a mutation of the KVLQT1 and/or hminK genes
which reduces the magnitude of the slowly activating delayed potassium current IKs , LQT2
a  mutation  in  the  HERG  gene  which  reduces  the  magnitude  of  the  rapidly  activating
potassium current IKr, and LQT3 a mutation in the SCN5A gene which prevents complete
inactivation  of  the  sodium current  INa.  Episodes  of  arrhythmia,  identified  by  syncope,
documented tachyarrhythmia,  or  sudden cardiac death,  occur most often in patients with
LQT1 and least often in patients with LQT3. However, the incidence of lethal arrhythmias is
five times greater in patients with LQT3 than in patients with LQT1 or LQT2 . Episodes of
arrhythmia in patients with LQT1 and LQT2 are therefore more likely to self-terminate than
those in patients with LQT3. Many LQTS arrhythmias show the characteristic waxing and
waning  in  the  electrocardiogram  (ECG)  that  is  classified  as  torsade  de  pointes  by
cardiologists.  We  assume  that  LQTS  arrhythmias,  once  initiated,  are  sustained  by  a
propagating re-entrant wave rotating around a moving core, and that this single wave then
can break down into the multiple waves of fibrillation. Meander occurs in homogeneous
isotropic and anisotropic  media,  in heterogeneous media the meander is accompanied by
drift. Re-entrant waves can be extinguished when their core either drifts or meanders to an
inexcitable  boundary.  Both  meander  and self-termination  of  re-entrant  waves  have  been
observed experimentally. In cardiac tissue a meandering and/or drifting re-entrant wave can
be pinned by a discrete anatomical obstacle, such as a blood vessel. Self-termination of an
unpinned re-entrant wave is more likely if the extent of meander is greater, because the core
is more likely to move to a boundary between heart muscle and inexcitable connective tissue.
Our model of normal myocardial tissue had an action potential duration (APD) measured at
90% repolarisation of 153 ms for plane waves when paced at a cycle length of 1000 ms. In
the models of LQTS myocardium APD was prolonged by between 14 and 19%. The cellular
restitution curves for simulated LQT2 and 3 are monotonic and similar to that for the normal,
shifted  upwards  towards  longer  durations,  while  the  restitution  curve  for  LQT1  shows
evidence of supernormal action potentials at very short intervals. The meander of the core in
simulated LQT1 (Figure 3 right) is both greater in extent and more irregular than in LQT2
and LQT3 (Figure 3 left) In particular, it has extended linear components, that in anisotropic
tissue would be up to three times longer. It is these fast, linear components of meander that



increase  the  likelihood  of  the  core  reaching  an  inexcitable  boundary.  In  LQT2,  the  tip
trajectory is similar to normal myocardium although the corners are smoother. In LQT3 , the
trajectory is again similar to normal myocardium, except that the corners are sharper. Apart
from the very small differences in action potential duration, the major difference between the
LQT1,  LQT2  and  LQT3  simulations  was  the  biphasic  restitution  curve  for  LQT1.  We
conclude that  in  LQT1 the  biphasic  restitution curve  exaggerates  the alternate  fast,  (INa
driven)  and  slow  (ICa  driven)  meander  cycles,  leading  to  an  increased  meander  in  an
isotropic medium that would be amplified in a heterogeneous and anisotropic 3-D ventricle
to increase the likelihood of self terminating arrhythmias. The 5-fold increased meander seen
illustrated  in  Figure  3  is  consistent with  the increased  likelihood of  self-termination  for
LQT1 as compared to LQT3 tachyarrhythmias [33].

Figure  3:  Computed  spiral  wave  tip  trajectory  1-2  s  after  initiation  by  the  phase
distribution  method  in  homogenous  isotropic  LQT 3  (left)  and LQT1 (right)  virtual
tissues, medium size 30 by 30 mm [33]

Resonant drift as a potential low-voltage method of defibrillation

A major cause of sudden death is the formation of a re-entrant wave of excitation in the
ventricles of the heart, that  prevents the rhythmic beating of the heart and its ejection of
blood. In such a re- entrant wave excitation propagates through the heart muscle, repeatedly
re-invading  the same tissue; this re-entry  can break  down into ventricular  fibrillation.  A
spiral  wave can  be forced to move by a spatially  uniform, time periodic  perturbation  of
appropriate frequency. Small amplitude, spatially uniform repetitive stimulation can be used
to produce directed movement of a rigidly rotating spiral wave, if the period of stimulation is
equal to the period of the spiral wave rotation (resonant drift). If the stimulation period is
close but not equal to the rotation period of the spiral  a circular  drift  is  obtained.  If the
stimulation period is fixed, this drift is strongly influenced by medium inhomogeneities [34].
Resonant drift in the location of a spiral occurs when the frequency of perturbation is the
same as the frequency of rotation of the spiral.

In principle, resonant drift under feedback control could provide a means of eliminating re-
entrant activity in cardiac tissue [35]. This contrasts with current methods of defibrillation,
which  use  single,  large  amplitude,  shocks,  that,  although  usually  effective,  does  cause
damage  to  the  heart  muscle.  The  potential  application  is  the  market  for  "intelligent"
implanted  cardiac  defibrillators,  trans-oesophageal  atrial  defibrillation,  and  open  chest
defibrillation after fibrillation has been induced to allow cardiac surgery. This will only be
practical only if any re-entry is eliminated within a reasonable time, say less than 30 s, and
estimation of the velocities of the directed drift that  can be achieved by resonant drift  is
important in assessing its feasibility as a means of controlling re-entrant arrhythmias.

Such a drift has been observed in reaction-diffusion model of rabbit atrium based on Earm-
Hilgemann-Noble kinetics [27],  as it  initially generates rigidly  rotating spiral  waves.  An
appropriately timed perturbation of 15% of the amplitude of the single shock defibrillation



threshold produces a directed motion with a velocity of about 0.4 cm/s, and so resonant drift
under  feedback control  could  be used to  eliminate  a spiral  wave from the atrium within
approximately 10 s, and so is a feasible approach. This is an alternative to the proposed use
of chaos control techniques [36].

Figure 4: Perturbations applied at the same phase of each rotation produce a directed
drift of the tip of the spiral wave solution of Figure 2; the tip trajectory is the white line;
the voltage is represented by a vertical displacement.

Figure 5: Tip trajectory for ventricular virtual tissue under feedback controlled, resonant
driving. When the wavefront of the spiral wave reaches a recording site at the bottom left
hand corner, a 2 ms, 4V/s depolarising perturbation was added after a fixed delay. Each
trajectory is for a different delay, corresponding to a different phase of the spiral. All
trajectories start in the centre, move towards the boundaries and annihilate. The dots
mark points on the trajectories corresponding to the moments of stimulation.

In the ventricular virtual tissue, even in the absence of inhomogeneities, the instantaneous
frequency of the spiral is always changing, because of the meander and so a pure resonant
drift  is  not  observed  at  any  constant  frequency.  The  resultant  motion  is  a  nonlinear
interaction between the pattern of meander and the motion produced by the perturbations.
The directed motion of resonant drift is much more robust if instead of choosing a fixed



frequency, some kind of feedback is used to synchronise the stimulation with the spiral wave
rotation [35]. Such feedback control can provide the stable resonant drift in the ventricular
virtual  tissue  model  [2].  Figure  5  shows  four  tip  trajectories  produced  by  repetitive
stimulation applied at four different fixed delays after the wavefront reached the bottom left
corner. The delay determines the initial direction of drift. A repetitive perturbation of 15%
the amplitude of the single shock defibrillation threshold produces a directed motion with a
velocity of about 0.4 cm/s.

Using  simpler  models,  either  the  FitzHugh-Nagumo  partial  differential  equation,  or  its
simplification for rapid computation for long times or in 3-dimensional space, or a kinematic
description of  wave front motion,  or  ordinary differential  equation  normal forms  for  the
dynamics of meandering spiral waves, the effects of boundaries, obstacles, and meander on
the near-resonant/resonant induced motion of spiral waves can be explored. These studies
provide a broad framework, within which some of the behaviours seen are relevant to the
control of re-entrant waves in cardiac tissue.

[37]  uses  simple  FitzHugh-Nagumo  equations  to  explore  the  effects  of  inexcitable
boundaries, electrode position, and inexcitable obstacles, on resonantly induced motion of
spiral waves in circular and annular media, where the radius of the medium is of the same
order of magnitude as the spiral wavelength. An objection to the application of resonant drift
to heart muscle is that local inhomogeneities, like blood vessels, can trap moving spirals;
different feedback methods are used to overcome this trapping.

Weakly excitable media
We have developed the kinematic approach to spiral motion , as distinct from the eikonal
approach (ie considers movement of the broken end of the front of the wave, as opposed to
the tip, defined by where wave-front and -back meet [38]), and considered behaviours in
weakly excitable media close to Winfree's [39] rotor boundary, where spiral waves fail to
propagate even though plane waves can. This leads to a more general kinematic approach,
within which the approaches of Davydov, Zykov and Mikhailov form a special case. The
relevance  of  this  is  that  it  takes  the  kinematic  theory  close  to  the  region  of  reduced
excitability/shortened action potential duration that is characteristic of ischaemic tissue, and
so provides the beginnings of a theoretical framework within which numerical simulations of
re-entrant wave initiation and stability in models of ischaemic tissue can be understood. We
have applied this theory to the drift of the spiral waves due to inhomogeneity of medium
properties. Both the inhomogeneity of the medium properties and the drift of the spiral/scroll
waves are considered as important factors of the fibrillation.

Qualitative features of meander
Mathematical aspects have been taken further, by using a general theoretical-group approach
to explain the main qulaitative features of meander of spiral waves in the plane, based on the
space reduction method to separate the motions in the system into the superposition of those
along orbits  of  the  Euclidean  symmetry  group,  and  those  across.  The  system of  ODEs
governing  tip  motion  was obtained,  and  a  derivation of  the Barkley  normal  form/model
system for bifurcation from rigid to biperiodic rotation presented [24]. This approach was
extended in [40] to account for hypermeander as a chaotic attractor in the quotient system
with respect to the Euclidean group. Such an attractor should lead to motion of the tip of the
spiral analogous to the motion of a Brownian particle, with the mean square displacement of
the tip growing linearly at large times, and so leading to self-termination of re-entry in a
restricted medium.

Extracellular fields, bidomain models and the virtual electrode effect

A biophysical problem with the stiff, high-order, reaction-diffusion models of cardiac tissue
is that the effects of external voltage gradients are not considered appropriately, as the tissue
is treated as a continuum, not cells embedded in extracellular fluid, and if an external field is



to influence a  cell  it  must have different effects  where it  enters and leaves the cell. For
anisotropic  tissues a  bidomain approach is sufficient for  investigating  propagation,  so  in
place of one PDE there are two coupled PDEs. However, for treating the effects of externally
applied  voltage  fields,  each  cell  needs  to  be  treated  as  a  spatially  extended  object.  A
simplification  of  this  problem is  given in [21],  and  so  defibrillation  thresholds,  and  the
effects of pharmacological agents on them, can be computed.

The  above  results  about  resonant  drift  were  for  external  perturbations  modelled  as  an
additional  current in the equation  for  the transmembrane potential,  with  an explicit  time
dependence. This is easy for numerical simulation, but does not correspond to real situation,
where the defibrillating voltage current is not applied across the membrane, but imposed
extracellularly. Therefore, the above results are not directly comparable to experimental data.
Specifically, this concerns the values of amplitudes of the stimuli, measured in mV/ms or
nA/cell , which have little and indirect relation to experimental values of V/cm or mA/cm2.
This is  not  a  matter  of  mere rescaling,  by estimating  how much of  the external  current
actually penetrates the cell membrane, but is a more fundamental difference in biophysical
mechanisms of action of  this current onto the cell,  since the same current will  cross the
membrane of the same cell at the same time in different directions in different parts of the
membrane, and thus will always have both depolarising and hyperpolarising actions on the
cell  as a whole. So, the amplitudes of the above numerical results may be interpreted, at
most,  only  qualitatively  and  in  units  relative  to  something  that  is  also  experimentally
measurable, e.g. defibrillation threshold (DFT).

An absolute quantitative estimation of DFT can be obtained by a quantitative theory of the
interaction  of  extracellular  current  with  membrane  excitation  processes.  This  has  been
applied to the ventricular virtual tissue, and has led to the estimation which is, at least in the
order of magnitude, comparable to experimental values.

Figure 6: Snapshots from movies of suprathreshold (above, and subthreshold (below)
defibrillation by a spatially uniform depolarising current pulse of a spiral wave as in
Figure 1. Time moments are chosen 0, 3, 40 and 100ms (left to right) measured since the
beginning of the stimulus.

The stimulus has both depolarising and repolarising effects, and in the region ahead of the
front  the  depolarisation  effect  overbalances  the  hyperpolarisation,  and  the  front  jumps
forwards. The later evolution depends on how far the wavefront jumped. If the stimulus was
above the threshold for defibrillation ( upper row of Figure 6), the front advances to the
region where the tissue has not recovered yet, and the antegrade propagation is not possible.
Hence, the front retracts, i.e. begins to collapse backwards, and the excited region shrinks
until  it  vanishes,  as  the depolarising  wavefront  moves  backwards  and the  repolarisation
waveback carries on moving forwards.



A smaller (subthreshold) shock will produce a smaller advance in the position of the front
and thus  allow  the possibility  for  it  to  recover  its  forward  propagation.  This  possibility
depends on two factors, the refractory state of the medium and the front curvature, which in
turn depends on the geometry of the wavefront at the moment of the shock delivery. The
lower row of Figure 6 shows the case when, after the shock, the propagation resumes not
along the whole front, but only at the most concave segment of it, where the front curvature
assist the propagation. This is sufficient to resume the rotation of the spiral wave. So, from
this example it can be seen that DFT measured in two dimensions should be usually higher
than that in one dimension.

We have  calculated  the one-dimensional DFT based  on  the properties  of  the single  cell
version of the ventricular guinea-pig cell equations and the restitution curve of original 1D
model;  this was  found to  be about 840nA/cell.  The numerically computed 1D DFT was
approx. 740 nA/cell, and in 2D, approx. 750nA/cell. These values are for the rectangular
current pulses of 2 ms duration, and with the intracellular conductance assumed 10 micro S ,
which is, e.g., the conductance of a 30 micro m cube of myoplasm with specific resistivity of
300 Ohm-cms . Assuming the orders of magnitude for cell  length, cell  cross-section and
heart cross-section, an external current of 1000nA/cell corresponds to the electric field of
about 10V/cm and transcardiac current of  10A which quite  agrees with the experimental
DFT of 5V/cm for electric field and 10 A for transcardiac current; as we mentioned above,
the theory allows absolute comparison with experiment only in the order of magnitude. The
close coincidence of  1D and 2D estimations of  DFT shows that  the 2D effects are  less
important than other simplifications used. We believe that the crudest of the simplifications
of that theory, after assumptions of uniformity of external current and tissue properties, is the
use of the Fife technique , considering the excitation wave propagation as trigger waves in
bistable media with one fast variable (the transmembrane voltage), while the conditions of
propagation are governed by slow and local evolutions. The evolution in the OGPV model is
more complicated, as there are three other  variables of characteristic  time scales roughly
comparable to that of the transmembrane voltage.

Figure  7:  Elimination  of  a  reentrant  wave  by  a  ``virtual  electrode''  induced  by
stimulation  of  a  near-DFT magnitude in full  bidomain  GPV model.  Top:  first  frame
shows  the  area  of  the  virtual  electrode;  other  frames  show  distribution  of
transmembrane voltage at selected time moments. The time is in ms since the beginning
of the stimulus.

3-dimensional  aspects  of  re-entry  in  experimental  and  numerical  models  of
ventricular fibrillation 

From  Professor  Jalife's  laboratory  at  SUNY,  Syracuse,  we  obtained  experimental
visualisations of electrical activity from the endo- and epicardial surfaces of pieces of sheep
ventricular wall (5-11mm thick) that had been excised and perfused via the coronary arteries,



and superfused with oxygenated physiological saline containing a drug (diacetyl monoxime),
that blocked contraction, and a potential-sensitive dye (di-4-ANEPPS). The video images
were obtained at 120 frames/s with a spatial resolution of approximately 0.5mm. The optical
signals  at  different  points  were  normalised  to  allow  for  the  variations  of  the  dye
concentration etc.

Figure  8:  Delay  coloured  snapshots  of  surface  views  of  experimental  polymorphic
tachycardia in islated perfused wall of sheep ventricle. Top row epicardial view, bottom
row endocardial, with the interval between images 50 ms.

The  typical  qualitative  properties  of  experimentally  observed  excitation  patterns  can  be
summarised as follows.

Synchronous endo- and epicardial views of the same preparation can, and most often
do, show different dynamics. In case of simple excitation pattern, corresponding to
monomorphic  tachycardia,  the  patterns  are  different  but  synchronous;  in  more
complex  cases,  corresponding  to  polymorphic  tachycardia/fibrillation,  they  seem
virtually independent.
At every particular  point, most of  the time the electrical  activity  is approximately
periodic. The spatio-temporal pattern as a whole can be approximately periodic, in the
examples that correspond to monomorphic tachycardia, but not in the examples that
correspond to polymorphic tachycardia/fibrillation.
During fibrillation, spiral waves are sometimes seen on the surfaces, but quite often
they are not. If they are seen, they appear only transiently, for a few rotations, and then
disappear.
The (visual) complexity of the patterns changes with time; at large times, it appears to
increase.

All these observations are consistent with scroll waves of excitation within the bulk of the
ventricular wall [41].



Figure 9: Numerical solutions of qualitative features of surface views of polymorphic
tachycardia seen in Figure 8, using FitzHugh-Nagumo model in a 50 s.u cube,  time
interval between images 4.2 t.u.

Figure 10: Numerical solutions of qualitative features of three-dimensional mechanism
generating  polymorphic  tachycardia  simulation  seen  in  Figure  8,  using  FitzHugh-
Nagumo model in a 50 s.u cube, time interval between images 4.2 t.u.

The choice of parameters used in the simulations of Figures 9 and 10 provides a negative
tension  of  the filaments,  i.e.  scroll  waves  in  sufficiently  large  media  are  unstable,  their
filaments tend to lengthen, curve, touch the boundaries and each other and break onto pieces,
each of which then grows again [42] etc. With the same parameter values, the same set of
equations in two spatial dimensions shows quite stable spiral waves. This is in qualitative
correspondence with the fact that real fibrillation is only observed in sufficiently thick hearts
or heart preparations.

The differences in  spatial  activity  on the two surfaces demonstrate  the essentially  three-
dimensional nature of the electrical activity that generates fibrillation in the animal tissue
model. The computations show that the patterns of activity can, in principle, be accounted for
by scroll waves within the ventricular wall. The scroll waves used to reproduce the surface
patterns are roughly parallel to the ventricular surfaces, in contrast to the transmural filament
proposed in [43]. In an intact heart, these waves would be around filaments which are closed
( i.e. scroll rings) or that terminate an inexcitable boundary.

Domain structure during ventricular fibrillation
Quantitative  analysis  of  the  excitation  pattern  on  the  cardiac  surfaces  has  lead  to  the
observation that the dominant frequency of oscillations has a domain structure, the frequency



being  approximately  uniform within  any one  domain  ,  and  the boundaries  between  the
domains are being sharp (of the order of 1 mm), and the domains persist over minutes [44].
This reconciles the contradiction between the recent description of order in fibrillation, based
on  statistical  analysis  of  high-resolution  data,  with  the  traditional  picture  of  disordered
fibrillation based on low-resolution maps, single electrograms or ECG.

Figure  11:  Experimental  data  illustrating  the  frequency  domains.  Blue  and  red
components of the painting show the power of the two frequency components at each
point; the spatial separation of the colours is the demonstration of the domain structure
of the excitation pattern. The ratio of frequencies is 15 : 12.5 = 6 : 5.

These domains could be due to different re-entrant sources with different periods, or could be
produced by one re-entrant vortex with a period shorter than the minimal propagation period
of some parts of the tissue, and the domains could be produced by frequency division due to
partial conduction block. This presupposes heterogeneity in the tissue properties. Although it
is  easy to distinguish between these mechanisms using data  generated in simulations, by
constructing power spectra (where the ratio of dominant frequencies will be ratio of small
integers), the frequency broadening due to the short duration of episodes of fibrillation means
that  frequency ratios  cannot  provide  a  practical  tool  for  distinguishing  between the two
methods. However, when combined with Lissajous figures the experimental records can be
separated into those in which the frequency patterns are consistent with conduction block and
those in which several re-entrant sources cannot be excluded [45 46]

Figure  12:  Numerical  solutions  illustrating  the  frequency  domains.  Blue  and  red
components of the painting show the power of the two frequency components at each
point; the spatial separation of the colours is the demonstration of the domain structure
of the excitation pattern. All dynamical variables in the right half of the medium have
been slowed, and there is a single  spiral source that is pinned in the left  half  of the
medium.



Conclusions
The models for cell excitation which are incorporated into the virtual tissues are based on
extensive,  in  vitro  experiments  and  so  they  have  a  firm  experimental  basis.  The  key
assumption in the virtual tissues we have presented is that propagation phenomena can be
represented  by  a  spatially  continuous,  rather  than  discrete,  cell-to-cell  process.  If  this
assumption is valid then the phenomenology presented should be seen in tissue experiments,
and optical recordings of electrical activity on the heart surface are begining to provide an
experimental  basis  that  can  be  used  to  validate  the  applicability  of  the  virtual  tissue
behaviours.

It  is  now technically  feasible  to  incorporate  the  virtual  tissue  models  into  anatomically
realistic  geometry  and  fibre  orientation,  and  to  incorporate  transmural  and  regional
differences  of  excitation  processes.  Thus,  a  virtual  organ  (the ventricle)  can  be  used  to
explore  the  mechanisms  of  propagation  disorders.  The  incorporation  of  excitation-
contraction coupling is well under way, and the ability to interact, using haptic feedback and
tissue mechanics, with such an electro-mechanical virtual organ is under development.
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