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Abstract. Biophysically detailed models of the electrical activity of single cardiac cells are modular,
stiff, high order, differential systems that are continually being updated by incorporating new
formulations for ionic fluxes, binding and sequestration. They are validated by their representation of
the ionic flux and concentration data they summarise, and by their ability to reproduce cell action
potentials, their stability to perturbations, structural stability and robustness. They can be used to
construct discrete or continuous, one-, two- or three-dimensional virtual cardiac tissues, with
heterogeneities, anisotropy and realistic cardiac geometry. These virtual cardiac tissues are being
applied to understand the propagation of excitation in the heart, provide insights into the generation
and nature of arrhythmias, aid the interpretation of electrical signs of arrhythmia, to develop
defibrillation and antiarrhythmic strategies, and to prescreen potential antiarrhythmic agents.
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Introduction

The computational modelling of electrical activity in the heart has provided a quantitative,
detailed description of normal activity, and is being applied to understand cardiac arrythmias,
and to evaluate methods for their control or prevention. Cell excitation is described by stiff,
high order systems of ODES that have and are being obtained from voltage clamp
experiments on single cells and membrane patches. Cell models can be coupled to form
tissue models, either in discrete space (coupled ODE lattice models) or as partial differential
systems of the reaction diffusion type. These are heterogeneous, both in the sense that
different cell types can be intermixed in the same tissue (\eg\ fibroblasts and pacemaker cells
in the sinoatrial node), and regional differences in cell parameters (say endo- to epicardial
changes in action potential shape prodiced by quantitative changes in membrane ionic
conductance parameters). Cardiac tissue is anisotropic, with propagation faster along the
fibre axis: homogeneous aniostropy can be removed by coordinate transformation, but
rotational anisotropy cannot. Quantitative models for cardiac geometry and anisotropy exist
(for the canine ventricles), and are being developed (for the pig and human atria). Thus the



investigation of propagation and its disorders is highly computational, and has developed in
close parallel with the avilablity of adequate computing power. Since cell models are
continually being updated by the incorporation of new results these computational models
need to be highly modular, so individual components can be unplugged and updated.

Modern cellular electrophysiology has provided quantitative descriptions, for different types
of cardiac muscle cells of different species, of membrane ionic currents, pumps and
exchange mechanisms that have been combined with intracellular and extracellular ionic
accumulation, depletion and sequestration processes to form biophysically detailed models of
membrane excitation [1]. These models, in the form of high order (a large number of state
variables), stiff (time scales ranging from fractions of a ms to hundreds of ms) differential
systems may be integrated to produce numerical solutions that reproduce currents seen under
voltage clamp, or membrane potential time series recorded from single cells. Models for cells
from different parts of the heart - the sinoatrial node, atrium, atrio-ventricular node, Purkinje
fibres and ventricular cells - have different action potential characteristics, generated by
guantitatively different but qualitatively similar mechanisms. Any single cardiac muscle cell
can be modelled by a system of ion-selective conductances with voltage-dependent
activation and inactivation processes, ionic pumps and exchangers, together with intracellular
and extracellular ionic sequestration, depletion and binding as differential system:

dv/dt =-1(V,g,)/C
dgn /dt = G(V.9m)
nm=1,...N

where C is the cell capacitance, V is the transmembrane voltage, | the transmembrane
current, the variables g, that describe the state of a cell (gating variables for the different
ionic channels, ionic concentrations in different compartments) and the functions G describe
their dynamics. The apparent simplicity of this description hides its complexity: N can be
large (e.g. N=17 for the guinea pig ventricular cell models [2] used below, and it also
contains a large number of parameters (e.g. maximal conductances, ionic concentrations,
reversal potentials), some of which are based on experimental estimates, and some of which
have been chosen to satisfy some constraint. For the cell model to have a stable resting
potential (a solution such that dV/dt =0) the resting state is electrically neutral i.e. charge
entry and exit via channels, pumps and exchangers is balanced. However, an electrically
model need not be chemically neutral - unless the entry and exit rates of each ionic species
are balanced there will be slow changes in intra- and extra-cellular ionic concentrations with
time. Cell models and their parameter values have been constructed primarily from
electrophysiological experimental data from different sources, obtained by different methods,
and usually obtained by protocols with a time scale of one to a few hundred ms. They are
usually not chemically neutral and so the valid time scale for cell models (and tissue models
derived from them) is only of the order of seconds: over longer time scales there are slow
changes in the variables representing concentrations that produce artefactual behaviours.

The variety of different cell models, and the alternative models for the same cell type,
combined with their common basic structure, suggests a modular approach in which a
particular cell model is specified by a set of modules that represent the ionic transfer
mechanisms (ion-selective, voltage dependent channels; pumps and exchangers), together
with binding and sequestration mechanisms (e.g. Ca**- binding by phospholamban,
calmodulin). Each of these mechanisms corresponds to a protein or protein complex, and so
will be able to be mapped onto the proteome. Each mechanism has its associated magnitude
(corresponding to its membrane density or intracellular concentration), and dynamics,
represented by a normal range of parameter values. These parameter values differ between
different models, and can be modified to represent the effects of changes in the cellular
environment (e.g. temperature, via the Qg of rate coefficients), pharmacological agents (e.g.



see [3] for examples of channel blockers) or mutations in genes expressed as cardiac
channels (e.g. see Meander in LQT syndromes below). Thus a specific model of a normal
or abnormal cell can be assembled from a set of modules and parameters, as in the Oxsoft [4]
package. As yet, there is no public domain package that would provide cellular cardiology
with an equivalent to what GENESIS [5 ] provides cellular neurophysiology.

The excitation equations for all cardiac muscle cells are high order and complex, with a large
number of variables and parameters. Vertebrate axonal excitation equations have less than
four dynamic variables controlling two conductances, while cardiac excitation equations
typically have about 20 dynamic variables controlling about a dozen conductances. From the
computational viewpoint, this raises practical problems, as there are few published models
that are without typographical errors, and so ensuring that a program actually codes a given
model and accurately specifying that model, is not as straightforward as it should be. From
the functional viewpoint, the complexity of cardiac excitation may just be an illustration of
the "baroque™ nature of biology, as for excitability and autorhythmicity only two variables
are necessary, and for the rate dependent changes in action potential duration that are mapped
as electrical restitution curves only three variables are required. However, the mechanisms of
cardiac excitation has not been sculptured but have evolved, and the complexity may give
cardiac excitation a robustness to changes in parameters. In spite of homeostatic
mechanisms, life threatening changes in the internal environment , such as fever, changes in
pH, and osmolarity do occur as part of the trials of life, and the complexity of the cardiac
excitation mechanisms might provide a robustness of behaviour - a persistence of sinus
rhythm- in the face of these large fluctuations in parameters.

A virtual tissue can be constructed by coupling together cell models, either in a discrete
representation, as a lattice of coupled cells, or in a continuous representation, as a system of
partial differential equations of the reaction-diffusion form, where the "reaction" term
represents the nonlinearities of membrane excitation and the diffusive term the electrotonic
spread of potential with distance through the cardiac tissue.

Such a virtual tissue can be used to understand the physiology of propagation in cardiac
tissue - for example, propagation during the normal sinus rhythm is often from tissue with
longer to tissue with shorter action potential duration, as from the centre to the periphery in
the sino-atrial node [6] and from the endocardial to epicardial surfaces of the ventricular wall
[7], so the depolarisation wavefront propagates "orthodromically", while the repolarisation
waveback collapses "antidromically”. A consequence is that re-entrant propagation is
prevented.

Failure of the rhythmic pumping of the heart produced by the arrhythmias of ventricular
tachycardia and fibrillation is not only a major cause of death, but is a terminal event in
almost all non-violent deaths. Most of these deaths are premature, both in the sense that the
probability of occurrence of a vascular insult to the myocardium triggering a lethal
arrhythmia can be reduced by appropriate dietary and activity regimes, and that potentially
lethal arrhythmias can be terminated by defibrillatory interventions if they are applied soon
enough. Virtual tissues can be used to understand the mechanisms of initiation and
persistence of arrhythmias, to explore the phenomenology and methods of defibrillation, and
to design or prescreen antiarrhythmic agents.

Below we illustrate the use of virtual cardiac tissue in understanding and controlling re-
entrant ventricular arrhythmias, by considering case studies of ventricular re-entry, LQT
syndromes, resonant drift as a strategy for low-voltage defibrillation, the behaviour of
weakly excitable tissue, bidomain models and virtual electrode effects in defibrillation, and
three dimensional aspects of ventricular fibrillation.



Methods

Cardiac tissue is spatially extended, and the description of propagation and its disorders
requires models of cardiac tissue as an excitable medium. The study of wave propagation in
“reaction-diffusion’ models of excitable media, i.e. considering tissue as a continuous
syncytium, has already contributed to the understanding of many phenomena related to
cardiac electrophysiology and has been done mostly in one-, two- and three dimensional
models of excitable media with simplified kinetics. Extensive exploration of two-
dimensional media or three-dimensional media with biophysically realistic kinetics has only
recently become possible. The study of three-dimensional cardiac tissue models with realistic
kinetics and anisotropy is only just becoming possible. The problem with biophysically
realistic models is their stiffness, i.e. wide range of characteristic time and space scales: from
tens of microseconds to hundreds of milleseconds and from tens of micrometers to
centimetres, thus the computational cost of straightforward approaches is enormous. We are
developing multigrid or restructurable grid schemes to reduce this load.

Granularity

"Reaction-diffusion’ approaches to cardiac tissue cannot in principle describe some
experimental phenomena. One example is the anisotropic vulnerability [8] , the phenomenon
of different minimal period of propagating waves depending on the direction of propagation,
which is impossible in continuous homogeneously anisotropic reaction-diffusion system (it
is, however, explainable in the bidomain theory, see below). An obvious way to allow for this
sort of phenomena is to consider each particular cell, i.e. describe the tissue in terms of
coupled ordinary differential equations (CODE) as in [9] rather than partial differential
equations (PDE). In certain situations this can be avoided by using phenomenological
interval-velocity relationships accounting for the cellular structure [10]; this approach
deserves further study.

Anatomy

Digitized anatomical data describing the canine heart (ventricles) including fibre orientation
are available [11], and such models have already been used in pilot simulations with
simplified kinetics. Early studies of propagation in realistic tissue geometries in mesoscopic
[12] and macroscopic [13 14] scales were all done with simplified reaction-diffusion models.
Incorporating “rotational anisotropy” within this approach does not meet any serious
difficulties, as all that is required is using a conductivity tensor instead of isotropic diffusion
of potential. To date computations of propagation in anatomically realistic models of cardiac
tissue have been in a static geometry; and propagation phenomena in a moving medium is
beginning to be approached, using phenomenological models [15 16 ].

Bidomain equations of cardiac tissue

Cardiac tissue can be considered as consisting of two domains: the interiors of the cells,
which are electrically connected by Ohmic gap junctions, and the common exterior, the two
domains being separated by the cell membranes, where the nonlinear nature of cardiac
excitability is localised. The currently prevailing viewpoint is that the distribution of the
electric potential in each of the domains is normally more or less smooth. This enables
averaging of the conductivity properties within each of the domains over the cellular scale.
This averaging leads to the description of the excitation propagation in terms of a PDE
system, which can be written as a system of local equations for the transmembrane voltage E
and local excitation variables (channel gates, ionic concentrations etc), and elliptic equation
for the extracellular potential ¢, :



0 = VoiVE +V(o; +0.)V¢,
atEl' = _C;;l (I(¢7gl) +X_1V0'ev¢e)
digi = G(E,g)

is transmembrane current, gj are local variables and ¥ is cardiocyte surface/volume ratio.

The key parameters of these equations are the conductivity tensors oj and og , of the two
domains, interior and exterior. If the corresponding components of the two conductivity
tensors relate to each other by a constant factor, the elliptic equation degenerates, and the
system is reduced to the parabolic equation, the "monodomain™ or “cable" theory (which can
be also obtained in the limit if one of the conductivity tensor is infinitely large) - see [17 18
19 20] and references therein. In general, both the equations for external potential and
transmembrane voltage (or equivalently, external and internal potentials) should be solved
simultaneously, and this difference from the monodomain theory provides specific features
of excitation propagation, like the non-elliptic shape of the waves from a point source and
anisotropic dispersion (velocity-rate) relationship. Another, qualitatively important feature of
the bidomain equations is that they describe the relationship between external electric field
and the distribution of the transmembrane potential, which is important both in the
interpretation of electrocardiographs and for electrical stimulation and defibrillation
technology. Computational approaches for the bidomain equations vary, and include e.g.
spectral methods [18], method of Green functions [19] and alternating directions [20]. The
first two are applicable in the case of spatial uniformity of the conductivity tensors (in
particular, a constant direction of the fibres) and are therefore of limited interest. The AD
method is applicable to the regular rectangular grids and can therefore only be considered as
a starting point, or as an interim procedure in a multigrid approach. An appropriate iteration
procedure for resolving the elliptic equation, that can be reformulated as a sequence of
explicit steps, and can therefore be applied to the multigrid tree and will allow parallelization
(see below). Due to the disproportion of characteristic times, the description of the
distribution of transmembrane voltage and fastest membrane variables over the membrane of
one cell can be successfully reduced to a low-dimensional O.D.E. [21] , and so the effects of
membrane parameters on defibrillation thresholds can readiliy be computed.

The trimmed-tree multigrid approach

In computation with regular grids, the time and space resolution are determined by the
temporal and spatial scales of the excitation front, of the order of 1 msec and 1 mm
respectively, which require corresponding computational steps to be at least of order of
magnitude less, whatever the requirements of precision or stability. On the other hand, this
resolution is required only at the fronts, and away from the fronts both time and space
variations are quite smooth and much larger steps could be acceptable. The idea is to use
small steps at the fronts and large steps away from it. Since the geometry and even the
topology of the fronts is varying not only from experiment to experiment, but even in the
course of one experiment (and, in a sense, such topological deformations are one of the most
principal issues of the theory, as they correspond to birth or death of re-entry waves), all the
computational approaches which make any assumptions on these fronts are not acceptable.
We use the idea of a trimmed quadtree representation, widely used in image representation
technology. The 2D medium is split onto square cells, and if the variation of the dynamic
field within one cell exceeds a certain value, this cell is split onto four children cells. This
process is repeated iteratively until variation of the field within every cell is less than the
adopted criterium. As the front propagates, the cells it approaches should split and the cells
behind it may join together again. This idea obviously extends to 3D.



Figure 1: A multigrid with 6 resolution layers (left) built to approximate a stiff spiral
wave wave solution (right). The number of nodes is 30 times less than that required by a
regular grid with the same accuracy.

This approach is illustrated in Figure 1. In practice, we use not a tree, but a forest, with roots
arranged in a regular grid of small size (16x16 for the example shown on the figure),
implemented as a dynamic structure. For models with biophysically realistic kinetics, the
main computational load (typically no less than 95%) is on the local step, which can be
performed absolutely independently for all computational cells, thus making this approach
perfectly parallelizable, with the maximal potential degree of parallelization being the
number of computational cells. As for the non-local step, it is also parallelizable if explicit
schemes are used. The stiffness of cardiac excitable kinetics imposes severe restrictions on
the time step at the front anyway, so explicit schemes for the non-local part may be
acceptable in many practical situations, including bidomain equations, if relaxation method
can be accepted for resolving the elliptic equations.

Results

Propagation phenomena in one-dimensional virtual tissues

The reaction-diffusion equation in one dimension has a spatially uniform solution,
corresponding to resting tissue, and can support solitary wave and wave train solutions. The
solitary travelling wave solution propagates at a velocity proportional to the square root of
the diffusion coefficient, and so the diffusion coefficient can be chosen to give appropriate
length and velocity scaling, or can be obtained from estimates of cell to cell coupling
conductance. The velocity of travelling wave solutions is rate-dependent.

Two travelling wave solutions meeting head on collide and annihilate each other; this
destructive interference results from the refractory period of the travelling waves. Supra-
threshold stimulation at a point in a uniformly resting one-dimensional model produces a pair
of travelling wave solutions that propagate away from the initiation site. The initiation of a
single solitary wave in a one-dimensional ring provides a computationally simple model for
re-entry; such unidirectional propagation can only be produced in a homogeneous one-
dimensional medium if the symmetry is broken, say by a preceding action potential. The
vulnerable window is the period after a preceding action potential during which a
unidirectional wave in a one dimensional medium can be initiated; stimulation during the
vulnerable period in the wake of a plane wave in a two-dimensional medium would initiate a
pair of spiral waves.

The length of the vulnerable window increases with stimulus intensity and with the length of
the stimulated tissue (the electrode size). If the effects of pharmacological agents or
pathological processes (ischaemia, acidosis) can be expressed as changes in the excitation



system then estimating the vulnerable window provides a means of quantifying the pro- or
anti-arrhythmogenic effects of these changes. An increase in the size of the vulnerable

window increases the likelihood of re-entry being triggered: this is found for Na*-channel
blockers [22 ] and so can account for the pro-arrhythmogenic effects of the agents used in the
CAST trials [23].

Re-entry in a two-dimensional ventricular virtual tissue

The generalisation of a solitary wave and a wave train in a two dimensional medium is a
plane wave and plane wave train. Since cardiac cells are cylindrical, and organised in sheets,
propagation in cardiac tissue is anisotropic, with the velocity being faster parallel to the fibre
axis. In homogeneous anisotropic cardiac tissue the "wavelength” of the action potential
changes with its direction of propagation. For isotropic virtual tissue repetitive focal
excitation will generate a circular wave train, the ellipsoid propagation pattern seen in real
cardiac tissue can be produced simply by a simple co-ordinate transformation. The normal
velocity V of a wavefront is also dependent on its curvature k: V = Vg -Dk, where D is the
effective diffusion coefficient. The dependence of velocity on rate, and on curvature, allows
rotating spiral wave solutions.

A spiral wave in a two-dimensional, homogeneous, isotropic medium provides a model for
re-entry. Spiral waves rotate around a central area of conduction block, or core, and may be
characterized by their period of rotation, size of core, and movement of the tip of the spiral.
At any specified instant in time the spiral wave has a location (given by the position of its
tip), and a spatial orientation of rotation phase. The tip can rotate rigidly around a circular
core, whose radius increases as excitability decreases, or meander bi-periodically [24 25 26].
For isotropic atrial virtual tissue, the spiral wave initially rotates rigidly, around a circular
core, with a period of 73 ms [27]. As the spiral wave ages the period increases to 84ms over
5 s, and the size of the core increases and the tip begins to meander [28]. The period of the
spiral wave is close to the period of atrial flutter.

For isotropic ventricular virtual tissue, the spiral wave illustrated in Figure 2 rotates with a
period of initially 170 ms, that decreases over a second to 100-110 ms. The motion of the tip
is not circular, but meanders, moving by a jump-like alternation between fast and very slow
phases, with about five jumps per full rotation of the spiral.

Figure 2: Spiral wave solution for ventricular tissue model. The intersection of two

isolines (for V = -10 mV, and the Ca™*-inactivation variable f = 0.5) defines the position
of the tip (blue ball) whose trajectory appears as the white curve. [2]



The multi-lobed meander of the ventricular tissue model we use, that has extended linear
segments separated by sharp corners, has been accounted for in terms of the two time courses
of the two principal depolarising currents. Propagation of the re-entrant spiral, or of a wave
around an extended linear obstacle, alternates between being driven predominantly by
sodium and calcium currents. Modification of the ratio of the time courses of these two
currents can extend the near- linear segments of meander. If these near-linear segments are of
the same length as the distance to an inexcitable boundary of the medium then the meander
of a re-entrant wave would lead to its self termination by moving its tip to an inexcitable
boundary. This mechanism might provide an explanation for ventricular tachycardia that
manifests itself as syncope, and for episodes of self-terminating fibrillation observed when
the electrocardiogram is being continually monitored, as in intensive or coronary care units
[29].

LQT syndromes: meander, self-termination and lethality.

Inherited LQT syndromes are associated with increased risk of re-entrant arrhythmia and

result from mutations in genes expressed as cardiac Na*- and K* - channel subunits . These
mutations prolong ventricular action potentials and produce long Q-T (LQT) intervals in the
electrocardiogram. Arrhythmias occur more frequently in patients with LQT1 and LQT2,
associated with mutant K*- channels, yet are 5 times more likely to kill patients with LQT3,
associated with mutant Na*- channels [30]. We interpret this finding as a greater likelihood
of self-terminating re-entry in LQT1 and LQT2. The relative meander of re-entrant sources
in these three phenotypes is consistent with clinical outcome, and illustrates that
computational functional genomics can provide insights into the whole organ consequences
of genetic abnormalities. The specific gene mutations each associated with an LQTS have
been identified [31 32]. Of these, LQT1 is a mutation of the KVVLQT1 and/or hminK genes
which reduces the magnitude of the slowly activating delayed potassium current lxs , LQT2
a mutation in the HERG gene which reduces the magnitude of the rapidly activating
potassium current lg,, and LQT3 a mutation in the SCN5A gene which prevents complete
inactivation of the sodium current Ing. Episodes of arrhythmia, identified by syncope,
documented tachyarrhythmia, or sudden cardiac death, occur most often in patients with
LQT1 and least often in patients with LQT3. However, the incidence of lethal arrhythmias is
five times greater in patients with LQT3 than in patients with LQT1 or LQT2 . Episodes of
arrhythmia in patients with LQT1 and LQT?2 are therefore more likely to self-terminate than
those in patients with LQT3. Many LQTS arrhythmias show the characteristic waxing and
waning in the electrocardiogram (ECG) that is classified as torsade de pointes by
cardiologists. We assume that LQTS arrhythmias, once initiated, are sustained by a
propagating re-entrant wave rotating around a moving core, and that this single wave then
can break down into the multiple waves of fibrillation. Meander occurs in homogeneous
isotropic and anisotropic media, in heterogeneous media the meander is accompanied by
drift. Re-entrant waves can be extinguished when their core either drifts or meanders to an
inexcitable boundary. Both meander and self-termination of re-entrant waves have been
observed experimentally. In cardiac tissue a meandering and/or drifting re-entrant wave can
be pinned by a discrete anatomical obstacle, such as a blood vessel. Self-termination of an
unpinned re-entrant wave is more likely if the extent of meander is greater, because the core
is more likely to move to a boundary between heart muscle and inexcitable connective tissue.
Our model of normal myocardial tissue had an action potential duration (APD) measured at
90% repolarisation of 153 ms for plane waves when paced at a cycle length of 1000 ms. In
the models of LQTS myocardium APD was prolonged by between 14 and 19%. The cellular
restitution curves for simulated LQT2 and 3 are monotonic and similar to that for the normal,
shifted upwards towards longer durations, while the restitution curve for LQT1 shows
evidence of supernormal action potentials at very short intervals. The meander of the core in
simulated LQTL1 (Figure 3 right) is both greater in extent and more irregular than in LQT2
and LQT3 (Figure 3 left) In particular, it has extended linear components, that in anisotropic
tissue would be up to three times longer. It is these fast, linear components of meander that



increase the likelihood of the core reaching an inexcitable boundary. In LQTZ2, the tip
trajectory is similar to normal myocardium although the corners are smoother. In LQT3 , the
trajectory is again similar to normal myocardium, except that the corners are sharper. Apart
from the very small differences in action potential duration, the major difference between the
LQT1, LQT2 and LQT3 simulations was the biphasic restitution curve for LQT1. We
conclude that in LQT1 the biphasic restitution curve exaggerates the alternate fast, (Ina
driven) and slow (lcg driven) meander cycles, leading to an increased meander in an
isotropic medium that would be amplified in a heterogeneous and anisotropic 3-D ventricle
to increase the likelihood of self terminating arrhythmias. The 5-fold increased meander seen
illustrated in Figure 3 is consistent with the increased likelihood of self-termination for
LQT1 as compared to LQT3 tachyarrhythmias [33].

Figure 3: Computed spiral wave tip trajectory 1-2 s after initiation by the phase
distribution method in homogenous isotropic LQT 3 (left) and LQT1 (right) virtual
tissues, medium size 30 by 30 mm [33]

Resonant drift as a potential low-voltage method of defibrillation

A major cause of sudden death is the formation of a re-entrant wave of excitation in the
ventricles of the heart, that prevents the rhythmic beating of the heart and its ejection of
blood. In such a re- entrant wave excitation propagates through the heart muscle, repeatedly
re-invading the same tissue; this re-entry can break down into ventricular fibrillation. A
spiral wave can be forced to move by a spatially uniform, time periodic perturbation of
appropriate frequency. Small amplitude, spatially uniform repetitive stimulation can be used
to produce directed movement of a rigidly rotating spiral wave, if the period of stimulation is
equal to the period of the spiral wave rotation (resonant drift). If the stimulation period is
close but not equal to the rotation period of the spiral a circular drift is obtained. If the
stimulation period is fixed, this drift is strongly influenced by medium inhomogeneities [34].
Resonant drift in the location of a spiral occurs when the frequency of perturbation is the
same as the frequency of rotation of the spiral.

In principle, resonant drift under feedback control could provide a means of eliminating re-
entrant activity in cardiac tissue [35]. This contrasts with current methods of defibrillation,
which use single, large amplitude, shocks, that, although usually effective, does cause
damage to the heart muscle. The potential application is the market for "intelligent"
implanted cardiac defibrillators, trans-oesophageal atrial defibrillation, and open chest
defibrillation after fibrillation has been induced to allow cardiac surgery. This will only be
practical only if any re-entry is eliminated within a reasonable time, say less than 30 s, and
estimation of the velocities of the directed drift that can be achieved by resonant drift is
important in assessing its feasibility as a means of controlling re-entrant arrhythmias.

Such a drift has been observed in reaction-diffusion model of rabbit atrium based on Earm-
Hilgemann-Noble kinetics [27], as it initially generates rigidly rotating spiral waves. An
appropriately timed perturbation of 15% of the amplitude of the single shock defibrillation



threshold produces a directed motion with a velocity of about 0.4 cm/s, and so resonant drift
under feedback control could be used to eliminate a spiral wave from the atrium within
approximately 10 s, and so is a feasible approach. This is an alternative to the proposed use
of chaos control techniques [36].

Figure 4: Perturbations applied at the same phase of each rotation produce a directed
drift of the tip of the spiral wave solution of Figure 2; the tip trajectory is the white line;
the voltage is represented by a vertical displacement.

Figure 5: Tip trajectory for ventricular virtual tissue under feedback controlled, resonant
driving. When the wavefront of the spiral wave reaches a recording site at the bottom left
hand corner, a 2 ms, 4V/s depolarising perturbation was added after a fixed delay. Each
trajectory is for a different delay, corresponding to a different phase of the spiral. All
trajectories start in the centre, move towards the boundaries and annihilate. The dots
mark points on the trajectories corresponding to the moments of stimulation.

In the ventricular virtual tissue, even in the absence of inhomogeneities, the instantaneous
frequency of the spiral is always changing, because of the meander and so a pure resonant
drift is not observed at any constant frequency. The resultant motion is a nonlinear
interaction between the pattern of meander and the motion produced by the perturbations.
The directed motion of resonant drift is much more robust if instead of choosing a fixed



frequency, some kind of feedback is used to synchronise the stimulation with the spiral wave
rotation [35]. Such feedback control can provide the stable resonant drift in the ventricular
virtual tissue model [2]. Figure 5 shows four tip trajectories produced by repetitive
stimulation applied at four different fixed delays after the wavefront reached the bottom left
corner. The delay determines the initial direction of drift. A repetitive perturbation of 15%
the amplitude of the single shock defibrillation threshold produces a directed motion with a
velocity of about 0.4 cm/s.

Using simpler models, either the FitzHugh-Nagumo partial differential equation, or its
simplification for rapid computation for long times or in 3-dimensional space, or a kinematic
description of wave front motion, or ordinary differential equation normal forms for the
dynamics of meandering spiral waves, the effects of boundaries, obstacles, and meander on
the near-resonant/resonant induced motion of spiral waves can be explored. These studies
provide a broad framework, within which some of the behaviours seen are relevant to the
control of re-entrant waves in cardiac tissue.

[37] uses simple FitzHugh-Nagumo equations to explore the effects of inexcitable
boundaries, electrode position, and inexcitable obstacles, on resonantly induced motion of
spiral waves in circular and annular media, where the radius of the medium is of the same
order of magnitude as the spiral wavelength. An objection to the application of resonant drift
to heart muscle is that local inhomogeneities, like blood vessels, can trap moving spirals;
different feedback methods are used to overcome this trapping.

Weakly excitable media

We have developed the kinematic approach to spiral motion , as distinct from the eikonal
approach (ie considers movement of the broken end of the front of the wave, as opposed to
the tip, defined by where wave-front and -back meet [38]), and considered behaviours in
weakly excitable media close to Winfree's [39] rotor boundary, where spiral waves fail to
propagate even though plane waves can. This leads to a more general kinematic approach,
within which the approaches of Davydov, Zykov and Mikhailov form a special case. The
relevance of this is that it takes the kinematic theory close to the region of reduced
excitability/shortened action potential duration that is characteristic of ischaemic tissue, and
so provides the beginnings of a theoretical framework within which numerical simulations of
re-entrant wave initiation and stability in models of ischaemic tissue can be understood. We
have applied this theory to the drift of the spiral waves due to inhomogeneity of medium
properties. Both the inhomogeneity of the medium properties and the drift of the spiral/scroll
waves are considered as important factors of the fibrillation.

Qualitative features of meander

Mathematical aspects have been taken further, by using a general theoretical-group approach
to explain the main qulaitative features of meander of spiral waves in the plane, based on the
space reduction method to separate the motions in the system into the superposition of those
along orbits of the Euclidean symmetry group, and those across. The system of ODEs
governing tip motion was obtained, and a derivation of the Barkley normal form/model
system for bifurcation from rigid to biperiodic rotation presented [24]. This approach was
extended in [40] to account for hypermeander as a chaotic attractor in the quotient system
with respect to the Euclidean group. Such an attractor should lead to motion of the tip of the
spiral analogous to the motion of a Brownian particle, with the mean square displacement of
the tip growing linearly at large times, and so leading to self-termination of re-entry in a
restricted medium.

Extracellular fields, bidomain models and the virtual electrode effect

A biophysical problem with the stiff, high-order, reaction-diffusion models of cardiac tissue
is that the effects of external voltage gradients are not considered appropriately, as the tissue
is treated as a continuum, not cells embedded in extracellular fluid, and if an external field is



to influence a cell it must have different effects where it enters and leaves the cell. For
anisotropic tissues a bidomain approach is sufficient for investigating propagation, so in
place of one PDE there are two coupled PDEs. However, for treating the effects of externally
applied voltage fields, each cell needs to be treated as a spatially extended object. A
simplification of this problem is given in [21], and so defibrillation thresholds, and the
effects of pharmacological agents on them, can be computed.

The above results about resonant drift were for external perturbations modelled as an
additional current in the equation for the transmembrane potential, with an explicit time
dependence. This is easy for numerical simulation, but does not correspond to real situation,
where the defibrillating voltage current is not applied across the membrane, but imposed
extracellularly. Therefore, the above results are not directly comparable to experimental data.
Specifically, this concerns the values of amplitudes of the stimuli, measured in mV/ms or
nA/cell , which have little and indirect relation to experimental values of V/cm or mA/cmZ.
This is not a matter of mere rescaling, by estimating how much of the external current
actually penetrates the cell membrane, but is a more fundamental difference in biophysical
mechanisms of action of this current onto the cell, since the same current will cross the
membrane of the same cell at the same time in different directions in different parts of the
membrane, and thus will always have both depolarising and hyperpolarising actions on the
cell as a whole. So, the amplitudes of the above numerical results may be interpreted, at
most, only qualitatively and in units relative to something that is also experimentally
measurable, e.g. defibrillation threshold (DFT).

An absolute quantitative estimation of DFT can be obtained by a quantitative theory of the
interaction of extracellular current with membrane excitation processes. This has been
applied to the ventricular virtual tissue, and has led to the estimation which is, at least in the
order of magnitude, comparable to experimental values.

Figure 6: Snapshots from movies of suprathreshold (above, and subthreshold (below)
defibrillation by a spatially uniform depolarising current pulse of a spiral wave as in
Figure 1. Time moments are chosen 0, 3, 40 and 100ms (left to right) measured since the
beginning of the stimulus.

The stimulus has both depolarising and repolarising effects, and in the region ahead of the
front the depolarisation effect overbalances the hyperpolarisation, and the front jumps
forwards. The later evolution depends on how far the wavefront jumped. If the stimulus was
above the threshold for defibrillation ( upper row of Figure 6), the front advances to the
region where the tissue has not recovered yet, and the antegrade propagation is not possible.
Hence, the front retracts, i.e. begins to collapse backwards, and the excited region shrinks
until it vanishes, as the depolarising wavefront moves backwards and the repolarisation
waveback carries on moving forwards.



A smaller (subthreshold) shock will produce a smaller advance in the position of the front
and thus allow the possibility for it to recover its forward propagation. This possibility
depends on two factors, the refractory state of the medium and the front curvature, which in
turn depends on the geometry of the wavefront at the moment of the shock delivery. The
lower row of Figure 6 shows the case when, after the shock, the propagation resumes not
along the whole front, but only at the most concave segment of it, where the front curvature
assist the propagation. This is sufficient to resume the rotation of the spiral wave. So, from
this example it can be seen that DFT measured in two dimensions should be usually higher
than that in one dimension.

We have calculated the one-dimensional DFT based on the properties of the single cell
version of the ventricular guinea-pig cell equations and the restitution curve of original 1D
model; this was found to be about 840nA/cell. The numerically computed 1D DFT was
approx. 740 nA/cell, and in 2D, approx. 750nA/cell. These values are for the rectangular
current pulses of 2 ms duration, and with the intracellular conductance assumed 10 micro S ,
which is, e.g., the conductance of a 30 micro m cube of myoplasm with specific resistivity of
300 Ohm-cms . Assuming the orders of magnitude for cell length, cell cross-section and
heart cross-section, an external current of 1000nA/cell corresponds to the electric field of
about 10V/cm and transcardiac current of 10A which quite agrees with the experimental
DFT of 5V/cm for electric field and 10 A for transcardiac current; as we mentioned above,
the theory allows absolute comparison with experiment only in the order of magnitude. The
close coincidence of 1D and 2D estimations of DFT shows that the 2D effects are less
important than other simplifications used. We believe that the crudest of the simplifications
of that theory, after assumptions of uniformity of external current and tissue properties, is the
use of the Fife technique , considering the excitation wave propagation as trigger waves in
bistable media with one fast variable (the transmembrane voltage), while the conditions of
propagation are governed by slow and local evolutions. The evolution in the OGPV model is
more complicated, as there are three other variables of characteristic time scales roughly
comparable to that of the transmembrane voltage.

Figure 7: Elimination of a reentrant wave by a “virtual electrode" induced by
stimulation of a near-DFT magnitude in full bidomain GPV model. Top: first frame
shows the area of the virtual electrode; other frames show distribution of
transmembrane voltage at selected time moments. The time is in ms since the beginning
of the stimulus.

3-dimensional aspects of re-entry in experimental and numerical models of
ventricular fibrillation

From Professor Jalife's laboratory at SUNY, Syracuse, we obtained experimental

visualisations of electrical activity from the endo- and epicardial surfaces of pieces of sheep

ventricular wall (5-11mm thick) that had been excised and perfused via the coronary arteries,



and superfused with oxygenated physiological saline containing a drug (diacetyl monoxime),
that blocked contraction, and a potential-sensitive dye (di-4-ANEPPS). The video images
were obtained at 120 frames/s with a spatial resolution of approximately 0.5mm. The optical
signals at different points were normalised to allow for the variations of the dye
concentration etc.

Figure 8: Delay coloured snapshots of surface views of experimental polymorphic
tachycardia in islated perfused wall of sheep ventricle. Top row epicardial view, bottom
row endocardial, with the interval between images 50 ms.

The typical qualitative properties of experimentally observed excitation patterns can be
summarised as follows.

e Synchronous endo- and epicardial views of the same preparation can, and most often
do, show different dynamics. In case of simple excitation pattern, corresponding to
monomorphic tachycardia, the patterns are different but synchronous; in more
complex cases, corresponding to polymorphic tachycardia/fibrillation, they seem
virtually independent.

e At every particular point, most of the time the electrical activity is approximately
periodic. The spatio-temporal pattern as a whole can be approximately periodic, in the
examples that correspond to monomorphic tachycardia, but not in the examples that
correspond to polymorphic tachycardia/fibrillation.

e During fibrillation, spiral waves are sometimes seen on the surfaces, but quite often
they are not. If they are seen, they appear only transiently, for a few rotations, and then
disappear.

e The (visual) complexity of the patterns changes with time; at large times, it appears to
increase.

All these observations are consistent with scroll waves of excitation within the bulk of the
ventricular wall [41].



Figure 9: Numerical solutions of qualitative features of surface views of polymorphic
tachycardia seen in Figure 8, using FitzHugh-Nagumo model in a 50 s.u cube, time
interval between images 4.2 t.u.

Figure 10: Numerical solutions of qualitative features of three-dimensional mechanism
generating polymorphic tachycardia simulation seen in Figure 8, using FitzHugh-
Nagumo model in a 50 s.u cube, time interval between images 4.2 t.u.

The choice of parameters used in the simulations of Figures 9 and 10 provides a negative
tension of the filaments, i.e. scroll waves in sufficiently large media are unstable, their
filaments tend to lengthen, curve, touch the boundaries and each other and break onto pieces,
each of which then grows again [42] etc. With the same parameter values, the same set of
equations in two spatial dimensions shows quite stable spiral waves. This is in qualitative
correspondence with the fact that real fibrillation is only observed in sufficiently thick hearts
or heart preparations.

The differences in spatial activity on the two surfaces demonstrate the essentially three-
dimensional nature of the electrical activity that generates fibrillation in the animal tissue
model. The computations show that the patterns of activity can, in principle, be accounted for
by scroll waves within the ventricular wall. The scroll waves used to reproduce the surface
patterns are roughly parallel to the ventricular surfaces, in contrast to the transmural filament
proposed in [43]. In an intact heart, these waves would be around filaments which are closed
(i.e. scroll rings) or that terminate an inexcitable boundary.

Domain structure during ventricular fibrillation

Quantitative analysis of the excitation pattern on the cardiac surfaces has lead to the
observation that the dominant frequency of oscillations has a domain structure, the frequency



being approximately uniform within any one domain , and the boundaries between the
domains are being sharp (of the order of 1 mm), and the domains persist over minutes [44].
This reconciles the contradiction between the recent description of order in fibrillation, based
on statistical analysis of high-resolution data, with the traditional picture of disordered
fibrillation based on low-resolution maps, single electrograms or ECG.

Figure 11: Experimental data illustrating the frequency domains. Blue and red
components of the painting show the power of the two frequency components at each
point; the spatial separation of the colours is the demonstration of the domain structure
of the excitation pattern. The ratio of frequenciesis 15:12.5=6: 5.

These domains could be due to different re-entrant sources with different periods, or could be
produced by one re-entrant vortex with a period shorter than the minimal propagation period
of some parts of the tissue, and the domains could be produced by frequency division due to
partial conduction block. This presupposes heterogeneity in the tissue properties. Although it
is easy to distinguish between these mechanisms using data generated in simulations, by
constructing power spectra (where the ratio of dominant frequencies will be ratio of small
integers), the frequency broadening due to the short duration of episodes of fibrillation means
that frequency ratios cannot provide a practical tool for distinguishing between the two
methods. However, when combined with Lissajous figures the experimental records can be
separated into those in which the frequency patterns are consistent with conduction block and
those in which several re-entrant sources cannot be excluded [45 46]

Figure 12: Numerical solutions illustrating the frequency domains. Blue and red
components of the painting show the power of the two frequency components at each
point; the spatial separation of the colours is the demonstration of the domain structure
of the excitation pattern. All dynamical variables in the right half of the medium have
been slowed, and there is a single spiral source that is pinned in the left half of the
medium.



Conclusions

The models for cell excitation which are incorporated into the virtual tissues are based on
extensive, in vitro experiments and so they have a firm experimental basis. The key
assumption in the virtual tissues we have presented is that propagation phenomena can be
represented by a spatially continuous, rather than discrete, cell-to-cell process. If this
assumption is valid then the phenomenology presented should be seen in tissue experiments,
and optical recordings of electrical activity on the heart surface are begining to provide an
experimental basis that can be used to validate the applicability of the virtual tissue
behaviours.

It is now technically feasible to incorporate the virtual tissue models into anatomically
realistic geometry and fibre orientation, and to incorporate transmural and regional
differences of excitation processes. Thus, a virtual organ (the ventricle) can be used to
explore the mechanisms of propagation disorders. The incorporation of excitation-
contraction coupling is well under way, and the ability to interact, using haptic feedback and
tissue mechanics, with such an electro-mechanical virtual organ is under development.
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