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Abstract. High throughput applications using broadband impedance spectroscopy as method for label free
detection are limited by measurement speed and the enormous amount of raw data. Although often ignored,
the fastest method for determining the passive electrical properties is the processing of the answer after step
excitation. Sampling with constant time interval is common but not feasible for real time applications. Only
adaptive sampling ensures high bandwidth of the measurement but still acceptable data volume.
Exponentially decaying relaxations are typical answers of biological objects to step functions. Sampling of
these signals using gradually increasing integration times does not violate the sampling theorem and allows
comparatively simple data processing.
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1. Introduction

Electrical impedance measurement is a method for nondestructive and label free characterization of any
kind of material. The impedance of biological material has manifold use, e.g. for quality assessment,
tissue discrimination or monitoring of growth processes [Grimnes et al. 2014]. While applications in
former time focused on tissue and cell suspensions, today increasingly single cells or cell agglomerates
are characterized by their electrical properties [Wolf et al. 2008]. The great advantage of electrical
measurements is the label free method and the comparatively cheap instrumentation.

The electrical impedance of biological material exhibits three well distinguishable dispersion regions
[Grimnes et al. 2014]: The a-dispersion arising from lateral movement of ions along cell membranes
with a characteristic frequency below 100 Hz, the B-dispersion in a frequency range between 10 kHz
and 10 MHz based on interfacial polarization of membrane structures and d-dispersion which is is
governed by orientation polarization of dipoles (Debye-relaxation) with the absorption peak above 100
MHz. A drawback of impedance measurements below 1 GHz is the low selectivity compared to other
methods.

While impedance measurement in early years were often done in narrow frequency band (e.g. only
one dispersion region), today broadband measurements over more than 6 decades can increase the
selectivity considerably by assessment of more than one dispersion region. For instance, a cell
suspension can be characterized not only by the polarization arising from cell membranes but also by
the conductivity of the suspension medium at very low frequency. Additionally, the density of water
dipoles is manifested as absorption within the GHz-range [Sachs et al. 2007].

Besides suitable electrode configuration for broadband measurement, also the instrumentation needs
special attention. A key feature of most biological material is the considerable drop in impedance
magnitude over several orders of magnitude between 10 Hz and 10 GHz. The classical way in bio-
impedance measurement, a frequency sweep, requires a measurement time ranging from a few seconds
(abandonment of low frequencies, small number of discrete frequencies, short integration time) up to
several minutes. Moreover, most instrumentation is not suitable for such broadband measurements.

A way out is the electrical characterization in time domain by excitation with broad bandwidth signal
and monitoring the response [4;5]. Digitizing of the excitation and the response is compatible with
modern technology and makes economic instrumentation available. However, measurement over
several decades becomes demanding. The lower cutoff is given by the duration of the excitation signal.
For instance, if the lowest frequency is 100 Hz, the signal length should be at least 10 ms. If a



measurement under steady state condition is considered, at least 100 ms are necessary (10 periods). In
order to fulfill the Kotelnikov’s sampling criteria, the sampling frequency should be at least twice the
upper cutoff frequency. Let’s consider a frequency band between 100 Hz and 10 MHz (5 decades),
sampling should be done with minimally 20 MS/s over 10 ms. This results in a vector length of 200.000
samples for each channel (excitation and response). This however, is the best case. Given unavoidable
noise, a higher sampling frequency would be desirable. Although, this is still feasible for single
measurements, high throughput monitoring (e.g. 100 cells / s) on this basis is either impossible or
requires extensive computation power. The practical solution today is the use of less bandwidth, for
instance between 10 kHz and 1 MHz where a time requirement for a single measurement can be
reduced down to 1 ms. Frequently chosen excitation signals are the Chirp function [Min et al. 2008],
Multi-sinus [Bragos et al. 2001] or maximum length sequences [Sachs et al. 2007].

Using fast Fourier transformation and sufficient computing power, real time monitoring is possible,
but only for narrow frequency range which limits the all over selectivity. The use of adaptive sampling,
e.g. high sampling rate where the signal changes fast and reduction of the sampling for slow parts can
considerably reduce the data volume without comprising accuracy of the method. The processing of
these data requires algorithms other than fast Fourier transform (FFT) but can be done as fast as well.
However, the signals generally favored for transformation into frequency domain are not suitable for
adaptive sampling. For this purpose, functions like Dirac-function, step function or ramps are a better
choice because of the typical response of biological material which is the superposition of exponentials.
Creation of even nearly Dirac-functions is demanding and ramp function lack energy within the high
frequency range. This makes step function a primary choice for excitation.

2. Electrical Characterization in Frequency and Time Domain

The electrical characterization of biological material in frequency domain is well established
[Grimnes et al. 2014]. A great number of devices, network analyzers, gain-phase analyzers or just phase
sensitive voltmeters is widely available and the measurement by sweeping the frequency through the
frequency band of interest is widely understood. A well-recognized advantage of measurements in
frequency domain is the use of selective amplifiers like lock-in-amplifiers which greatly reduces
stochastic noise. The sometimes long measurement time is in most cases not critical. Taking all this
together, this method is today the golden standard for bio-impedance measurement.

While the impedance as material property is a function of frequency, the response to a broadband
signal is a voltage or current as function of time. Strictly speaking, impedance does not exist in time
domain. However, characterization of material with time variant impedance by means of impedance
measurement as function of time should be clearly distinguished from electrical material
characterization in time domain.

If a system is time invariant and linear with respect or current/voltage characteristics, time and
frequency domain can be converted into each other using several kind of transformation where the most
popular one, the Fourier transformation is limited to steady state condition. Laplace transformation is
required for transient behavior. A popular method for fast impedance measurements is the measurement
in time domain with transformation into frequency domain where all subsequent processing like model
fit or other kind of data interpretation are done in frequency domain as well.

It is however feasible to characterize a material directly in time domain. The impedance as
characteristic material property in frequency domain corresponds to a system of differential equations
in time domain [Wunsch, 1970]. A particular solution of these equations for stimuli like Dirac-function
or step function as boundary condition is a sum of exponentials, either as current or voltage trace in
time.

From the impedance spectrum distinguishable dispersions characterized by the circumference and
the characteristic frequency can derived. A particular frequency dispersion, characterized by its
characteristic frequency (o) and its circumference (Ro - R.) corresponds to a relaxation in time domain
described by the time constant (t) and a relaxation strength (U - Uo) (see Fig.2). The relation between
time and frequency domain is shown (Fig.1) at the commonly used equivalent circuit for biological
material with a resistor R, for the extracellular electrolytes and the RC-combination for the cell
surrounded by an insulating membrane modeled by C.
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Figure 1 Current and voltage in frequency and time domain. The impedance (left) is
Z(jw) = U(jw) / 1(jw). A transient stimulus in time domain (current step, s(t)lo) applied at to without
any signal history (li<o = 0) yields an exponentially relaxing voltage depending on the impedance of
the material.

The locus diagram of the impedance for a circuit in Fig.1 is a half circle (Fig.2) while the voltage
response to a current step is an exponential function.
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Figure 2 Representation of electrical properties in frequency domain (impedance, left) and time domain
(relaxation,right)

3. Processing Data in Time Domain

The performance of using the step response either for calculation of the impedance or for
assessment of electrical properties directly in time domain depends on the sampling regime. In general,
according to the sampling theorem, the highest assessable frequency depends on the sample rate. If the
sample rate is too small with respect to higher frequency compounds within the signal, aliasing can
significantly disturb the result. The optimum would be a signal filtered with a cutoff at the highest
desired frequency and sampled with twice as the cutoff frequency. Moreover, in order to have
acceptable quantization noise, high ADC-resolution (digital/analog converter) is essential.

Fourier transformation using this kind of data to calculate the impedance spectrum yields often
disappointing results. Especially at high frequency, incredible noise appears due to the low signal
energy. Algorithms for smoothing the spectrum are not considered here since the focus lies on the main
problem, the big data volume. For the assessment of all three relaxations (a.,f3,y) corresponding to the
frequency dispersion, long sample vectors (e.g. 20 million samples) are necessary. It is not a question
that modern technology is able to handle such big data. However, it becomes important when
continuous monitoring in high throughput applications is desired with real time processing of the data.
A relatively fast algorithm lies in the partial fit of relaxations yielding a time spectrum as shown in
Fig.3 for KCl-solution contacted by microelectrodes (5 um distance).
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Figure 3 Time-spectrum calculated from the voltage across the electrodes



The relaxation strength has been normalized to the sum of all relaxation strengths. There is one
dominating relaxation arising mostly from the interface electrode-electrolyte. Due to the fit procedure,
only ideal relaxations were calculated. More sophisticated algorithms use distribution of time constants
which can also account for constant phase elements describing for instance the impedance of the
electrode interface. Given the nature of relaxation process, fast sampling is not necessary throughout the
signal. Breaking the signal into windows, high frequency compounds appear only immediately after the
current step. It should be noted that his consideration does not violate the steady state condition of a
Fourier transformed signal, where time information is lost and any frequency component has an
invariant amplitude within -0 <t <oo. With respect to fig.4, a marked difference to general approach is
that only a window of a transient response is considered and not a steady state signal. Having a high
sampling frequency at the beginning is essential while with longer time after the step no further high
frequency information appear. Therefore, the sampling rate can gradually cease (Fig.5) without losing
information. An often underestimated problem is the high frequency noise present even at the slowly
changing part of the signal. This would require an adaptive anti-aliasing filter as well. Current solution
use averaging between 2 sampling points which yields the low pass filtering with a cutoff frequency
which is half the sample rate. This fulfills the sampling theorem and achieves adaptive anti-aliasing
filtering.

mostly low frequency information

possibility for extracting high
frequency information

Figure 4 |lllustration of the step response (e.g. voltage) with respect to the possibility for extracting high
frequency information.

With longer time after the step, the high frequency compounds diminish. Using 10 sample points
per decade requires 60 points for a bandwidth ranging over 6 orders of magnitude, for instance from
100 Hz up to 100 MHz. Since applications seek a characterization of the material, calculation of the
impedance spectrum is not necessary. A simple algorithm uses three sample points for calculation of
time constant and relaxation strength. A requirement is that the three sample points are evenly spaced as
shown in Table 1.

Figure 5 Non-uniformly spaced sampling points (dots) of a voltage response from micro electrodes in KCL-
solution.

Starting from the end of the signal U = f(t) (0.5 ms in Fig.5), the largest time constant (i=1) and the
relaxation strength can be calculated as:
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After subtraction of this relaxation from the vector, the next points are used for calculation of the
next relaxation until the relaxation strength fall behind a pre-defined minimum. Such result is
represented in fig.3. The same algorithm can be used for transformation into frequency domain, by
adding the integrals of all the segments. A particular coefficient has the form of:
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It should be noted that the analytical solution for the integral should be used rather than a numerical
approach. The simplest way for transformation bases on the equivalent circuit in Fig.6.
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Figure 6 Equivalent circuit for series of relaxing structures

This yields directly the impedance spectrum
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with distinguished dispersions represented by the RC-combinations. ao is the dc-part and is
calculated as sum of all c-coefficients %o = Zi-16i, lo is the magnitude of the current step. If the
biophysical model requires parallel and serial arrangement of relaxing structures, a rearrangement of the
equivalent circuit is feasible.

(4)

Table 1 Example for a sampling time vector with gradually increasing spacing but two subsequent sampling
intervals being equal.

sample t/us Aty = t-t Aty =ty -ty
point
1 0.67
2 1.33 0.67 0.67
3 2
4 4 2 2
5 6
6 12 6 6
7 18
8 36 18 18
9 54
10 108 54 54
11 162
12 331 168 168
13 500




The algorithm used here assumes a nearly ideal current step with fast rise time, no overshoot and
flat throughout the measured period. Current sources, especially made for this purpose are described in
[Pliquett, 2011].
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Figure 7 Comparison of a reference measurement (multisine, dots) with the impedance directly calculated
from time domain (line) for an electrode distance of 5 um. The right panel shows the Wessel-plot
for both measurements.

A similar algorithm is possible for voltage controlled excitation. With some changes, using
transformation of both, current and the voltage, signals of less quality (overshoot, bad quality of slope,
value arte t=0 not constant) can be used. Moreover, methods for handling constant phase elements or
parasitic elements like parallel capacitors exist but are behind the scope of this paper. The comparison
between the signal measured and processed in the described way and the result of a multisine approach
at the same object is shown in Fig.7.

4. Conclusions

Impedance measurements for high throughput application are not only critical with respect to the
measurement speed but also with respect to the data volume acquired. Gradually decreasing of sample
rate together with adaptive filtering, accomplished by variable integration time during the sampling
process of step response, results in great data reduction without comprising measurement precision.
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