
Efficient identification of oblique Volterra systems 
Mark E. Pfliegera

aSource Signal Imaging, Inc., San Diego, USA 
Correspondence: M.E. Pflieger, Source Signal Imaging, Inc., 2323 Broadway, Suite 102, San Diego, CA USA 92102 

E-mail: mep@sourcesignal.com, phone +1 619 234 9935, fax +1 619 234 9934 

Abstract.  A computationally efficient method is described for estimating first-order and associated 
higher-order kernels of general multi-input Volterra systems expressed in the oblique (nonsymmetric) 
form.  A first-order kernel characterizes how a system responds to isolated inputs (i.e., an isolated 
input-output transformation), and the oblique form interprets a higher-order kernel as modifying an 
input-output transformation for one specific (target) input channel in the context of other inputs.  
Context is quantified as products of the target input channel with one or more input channels lagged 
with respect to the target.  The full system is Fourier transformed, and orthonormal basis functions are 
stipulated for inter-channel lags in the frequency domain.  The system then reduces to a linearized 
form.  Basis factors associated with the input products (“q-factors”) are calculated for each 
experimental realization, and then basis coefficients associated with unknown kernels (“a-coefficients”) 
are found via complex singular value decomposition (SVD) at each frequency, across all realizations.  
SVD permits singular situations to be diagnosed and treated.  Finally, kernels are reconstructed in the 
time domain via inverse Fourier transformation.  New applications are envisioned in systems 
neuroscience, and in cognitive neurophysiology using continuous sensorimotor tasks. 
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1. Introduction 
Cognitive-behavioral experiments with neurophysiological data (such as EEG or MEG) typically 

use event-related paradigms, which are well suited for laboratory controls, yet otherwise are highly 
simplified compared with life outside the lab.  In particular, daily life often requires monitoring of 
continuous variables in real time concurrently with graded behavioral adjustments (e.g., sensorimotor 
tracking) in contrast with—or in addition to—discrete stimulus detection and ballistic response 
production.  It is unclear how to analyze neurophysiological data acquired with continuous paradigms, 
and whether event-related analysis might be generalized for integration with continuous analysis. 

A companion paper [Pflieger, 2011] presents a theory of event-related Volterra (ERV) modeling, a 
nonlinear generalization of Hansen decomposition [Hansen, 1983] which, in turn, generalizes the 
ubiquitous method of event-related averaging.  Here we show that computationally efficient ERV 
model estimation, which employs basis functions in the frequency domain, can be extended to handle 
general Volterra systems with continuous input functions. 

The Volterra-Wiener approach to system identification [Schetzen, 1980] originated with Volterra 
[1930] and Wiener [1958] as general expansions for input-output transfer functions, originally for one 
input time series and one output time series, and later generalized to the multi-input case [Marmarelis 
& Naka, 1974].  The multi-output case is handled simply by separate treatment for each output 
function.  Analogous to Taylor series expansions, the main idea is to approximate an arbitrary transfer 
function by truncating an expansion at a finite order.  A first-order kernel is the familiar impulse 
response function of linear system theory; it is convolved with an input time series to produce an output 
time series. By generalizing convolution to include two or more time lags, the same relationship holds 
for second- and higher-order kernels (see Eq. (1)).  In neuroscience, various kernel estimation methods 
have been applied in somatosensory [Sclabassi et al., 1985], visual [Pinter & Nabet, 1992], auditory 
[Eggermont, 1993], CNS network analysis [Sclabassi et al., 1988][Song et al., 2009], and functional 
neuroimaging [Friston et al., 1998] studies. 

Because Wiener expansions are optimized for specially randomized inputs (such as white noise), 
which are not generally useful in cognitive-behavioral experiments, this paper focuses on Volterra 
expansions.  Section 2 introduces inter-lag intervals (ILIs) and inter-lagged multi-products for an 
oblique reinterpretation of the standard symmetric Volterra expansion.  This sets up Section 3’s 
frequency domain approach using ILI basis functions.  Section 4 describes how to calculate the input-
related factors associated with ILI basis functions for each term of the Volterra expansion.  These “q-
factors” are applied in Section 5 to obtain the kernel-related coefficients of the ILI basis functions in 
the context of a singularity analysis, which is needed to insure adequate experimental design and robust 



estimation.  After all kernels have been expanded in the frequency domain, they are reconstructed in 
the time domain, where their interpretation may shed light on the observed system behavior. 

2. Oblique Volterra systems 
On each realization (e.g., trial) j , a Volterra system with L  inputs (e.g., sensory or motor task 

variables) 1(), , ()j jLx x�  generates an output time series (e.g., data on a neurophysiological channel) 

()jy  via a functional series expansion, as follows: 
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where ()jε  is random error, and all integrals are from −∞  to ∞ .  The Volterra system is 

characterized by its kernels, which are invariant across realizations: 
1

(1)()ih  is a first-order kernel (i.e., 

impulse response function); 
1 2

(2)(, )i ih  is a second-order kernel; 
1 2 3

(3) (,,)i i ih  is a third-order kernel; and so 

on.  The standard form of Eq. (1) treats all lags 1 2, ,τ τ …  symmetrically.  In the equivalent oblique 

form, the first lag 1τ  is provided a special status with respect to the time variable t , and the other lags 

are parameterized relative to 1τ  as inter-lag intervals 12 1 2 13 1 3, ,σ τ τ σ τ τ≡ − ≡ − … : 
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Underscores indicate kernels in oblique form.  Inter-lagged multi-products are defined as 

1 2 1 212 12[ ]( ) ( ) ( )ji i ji jix t x t x tσ σ≡ +  , (3) 

1 2 3 1 2 312 13 12 13[ , ]( ) ( ) ( ) ( )ji i i ji ji jix t x t x t x tσ σ σ σ≡ + + , (4) 

and in general 

1 2 1 212 1 12 1[ , , ]( ) ( ) ( ) ( )
m mji i i m ji ji ji mx t x t x t x tσ σ σ σ≡ + +

�

… � . (5) 

The oblique form interprets each kernel, of any order, as an inter-lag interval (ILI) parameterized 
transient waveform: a first-order kernel is a transient waveform without parameters; a second-order 
kernel is a transient with one ILI parameter; a third-order kernel is a transient with two ILIs; and so on.  
A key feature of the oblique form is that all kernels with the same target index 1i  also share a common 

time base ( 1τ ).  Kernels and their associated inter-lagged multi-products share exactly the same ILI 

parameters.  Finally, like the kernels, inter-lagged multi-products with the same target index 1i  also 

share a common time base ( 1t τ− ). 
Thus, a natural interpretation for the oblique form is that higher-order terms modify their associated 

first- and lower-order terms.  That is, the primary system phenomenon associated with input variable 

1
()ix•  is a transient component comprising all terms with the same 1i  index.  In yet other words, a 

kernel’s target index specifies a primary transient associated with an input variable, and the remaining 
indices specify secondary modulations via lags associated with the same or other input variables. 



3. Frequency domain formulation using ILI basis functions 
The Fourier transform of Eq. (2) is 
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where uppercase denotes the Fourier transform of a corresponding lowercase time series.  The 1τ  lags 
integrated out when waveform convolutions converted to multiplications in the frequency domain. 

Next, a set of orthonormal basis functions is stipulated for each ILI integration parameter 1mσ : 
1 1 1
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Consequently, a third-order term (as a prototypical case) expands, and then reduces, as follows: 
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where the final reduction—with both ILI parameters having integrated out—results from 
orthonormality of the stipulated set of basis functions.  The reduction of Eq. (10) clearly generalizes, so 
that an order M  oblique Volterra system in the frequency domain has the linearized form 
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where selection booleans β•  have been inserted to specify (from the full model) whether a partial 

model shall include ( 1β• = ) or exclude ( 0β• = ) a particular kernel’s term.  The unknown a-
coefficients may be obtained using linear methods; then the kernels are reconstructed in the frequency 
domain via Eq. (8).  Before this can proceed, however, the input-driven q-factors must be calculated. 

4. Calculation of q-factors 
Equation (9) is the foundation for determining the q-factors associated with a given higher-order 

term.  For each realization and each frequency, there are 
1 2 1 mi i i iB B B= � such factors; whereas the 



input data consist of S  combinations of ILIs for the multi-lag products, which come from Eq. (5).  In 
theory, the integral for each ILI σ  is unbounded; but in experimental practice, bounds from minσ  to 
maxσ  must be specified, and a finite number of ILIs are sampled within this range; so that

1 2 1 mi i i iS S S= �  is the product of these numbers across all ILI parameters.  Because the basis 

functions are a means of approximation, 
1 1k ki i i iB S< , and typically B S� .  Thus, a complex linear 

system with more equations than unknown q-factors can be set up from the following definitions: 

       

1 2 1 1 2 1

12 1

1

1 2 12 1 1 1 2 12 1 1

12 1

1

( ) ( ) ( ) ( )(1) (1) (1) (1)
1 12 1 1 12 1

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 12 1 1 12 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

m m

i i i im

m

i i i i i i i im m m m

i i i im

m

i i i i i i i i
m B B m

i i
S S S Si i i i i i i i

m B B m

ji i

b b b b

b b b b

q
f

σ σ σ σ

σ σ σ σ

⎡ ⎤

⎢ ⎥

⎢ ⎥≡
⎢ ⎥

⎢ ⎥
⎣ ⎦

≡

P

q

�

�

� … �

� � �

� � �

1
1

1

1 12 1
12 1 1

(1) (1)( )
12 11 1

( ) ( ) ( )
12 1

[ , , ]( )( )
( )

( ) [ , , ]( )

m
m

m

m i i i im
i i i im m

ji i
ji i m

ji i
ji i S S
B B ji i m

X ff
f

q f X f

σ σ

σ σ

⎡ ⎤⎡ ⎤

⎢ ⎥⎢ ⎥

≡ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

X

�

�
�

�

�

�

�

�

� �

�

 .          (12) 

Namely, 
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Consequently, the q-factors are calculated as follows: 
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Invertibility of the B B×  matrix 
1 1

*
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� �

 is a requirement to be met by suitable selection of ILI 

basis functions and ILI samples of multi-lag products.  Note that the B S×  pseudoinverse matrix 

1 mi i
+P
�

 correlated with each kernel can be precalculated once for all realizations and all frequencies. 

5. Solution via complex singular value decomposition (SVD) 
For J  realizations, Eq. (11) may be written in matrix form as 

( ) ( ) ( )f f f≈Q a Y (15) 
where 
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and it is understood that only the boolean-selected terms have been included.  The solution via complex 
singular value decomposition (SVD) [Golub & Van Loan, 1996][Press et al., 1988] is 
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where ( )fW  is a diagonal matrix of non-negative real singular values, and ( )f +W  is obtained by 
forming reciprocal singular values unless they are close to zero, in which case the researcher must 
decide whether to regularize the solution by setting the corresponding reciprocals to zero, or to modify 
the experiment.  In particular, singular values close to zero may indicate that the experiment is 
inadequate to identify the selected kernels: It may have too few realizations (trials), or the experimental 
input variables may have been insufficiently randomized across realizations.  Per Section 4, note that 
the Q-matrix is derived from the input time series.  To the extent that these are planned, experimental 
adequacy may be assessed before acquiring the output data. 

To complete the solution, a-coefficients at each frequency are used in Eq. (8) to reconstruct the 
kernels, which ultimately are inverse Fourier transformed to the time domain. 



If the error process spectral density ( )j fΕ  is available, it may be used to whiten ( )fY  and ( )fQ

by simple division, in which case the whitened ( )fY  and ( )fQ  may be substituted in Eq. (17).  
Unless estimates of the error process can be made for each experimental realization, the whitened and 
unwhitened solutions are algebraically equivalent. 

6. Discussion 
Theoretical results of this paper demonstrate that an efficient frequency domain solution method 

for discrete event-related Volterra (ERV) models [Pflieger, 2011] can be extended to general Volterra 
models.  The oblique form using inter-event intervals (IEIs) in the ERV case was generalized here to an 
oblique form using inter-lag intervals (ILIs) with inter-lag multi-products of the input time series.  The 
oblique form does not restrict the generality of a Volterra system, but is an alternative interpretation, 
equivalent to the standard symmetric form.  Final solutions in both cases (this paper’s Eq. (17), and Eq. 
(7) in [Pflieger, 2011]) share an identical form.  The key difference is that the general method for 
calculating the Q-matrix via Eq. (14) requires considerably more machinery compared with simple 
recursive formulas for q-factors in the ERV case. 

Although the general method is inefficient for the discrete event-related case, it can handle 
continuous input time series efficiently and robustly.  In particular, one large system of equations in the 
time domain has been reduced to many smaller systems of complex linear equations in the frequency 
domain, where singularity analysis is performed for each inversion step to confirm adequate 
experimental design and repetitions.  In addition, a singularity analysis may be performed in advance of 
acquiring the output data to facilitate experimental planning. 

In addition to enabling efficient computation, the oblique form also facilitates interpretation of an 
identified higher-order kernel, which is associated with exactly one target input time series, and 
modifies its first-order kernel in the context of other input time series.  The first-order kernel for an 
input time series characterizes how the system responds in isolation from other inputs (whether from 
other-indexed input channels, or at other times on the same-indexed channel).  In the oblique 
interpretation, higher-order kernels convey the contextual effect of other inputs by adding to, or 
subtracting from, the first-order kernel.  In other words, they transform input-output transformations. 

Potentially, the method may be applied in various scientific domains that deal with multiple time 
series, including systems neuroscience at several levels of analysis.  At the top level, applications are 
envisioned in the domain of cognitive-behavioral neurophysiology: brain signals and modulations 
related to continuous variables may be studied in contexts such as eye tracking, or robot-assisted 
sensorimotor training for stroke rehabilitation. 
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