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Abstract. Conditioning is a very important factor to be considered when solving linear inverse 
problems. Many different measures of conditioning exist, but some of them are not always numerically 
stable or can indicate that the problem is ill-conditioned, even though in reality it is not. We
theoretically consider and numerically compare four figures of merit: the condition number with respect 
to the 2L norm, Skeel condition number, ratio of the largest and mean singular value of a matrix and a
novel figure of merit, based on the linear dependency between rows in underdetermined linear inverse 
problems and between columns in overdetermined problems. Numerical simuations show that all the 
figures of merit have low values when the linear inverse problem is well-conditioned and their values
increase if the condition decays. The newly proposed figure of merit has three advantages: it does not 
require singular value decomposition, it enables the comparison of different sensor arrays and it is 
independent of row and column scaling in underdetermined and overdetermind problems, respectively. 
These features of the proposed figure of merit are promising for further applications.  
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1. Introduction
In this paper, we consider a linear model describing the relationship between the three components 

of the magnetic moments of magnetic dipoles m and one component of the measurement values of the 
magnetic flux density b , according to

bmL ,  (1)
where L is a lead field matrix, mnRL 3, . The lead field matrix contains information about the sensor 
setup and the source model.  

When estimating the magnetic moments m from the magnetic flux density values b , the condition 
of the linear inverse problem becomes very important. Many approaches exist, which try to improve 
this property of the linear inverse problem. The core measure, on which such improvement methods 
rely, is the figure of merit indicating the condition of L . We consider and compare the following 
figures of merit: condition number with respect to 2L norm [1, 2], Skeel condition number [3] and the 
ratio between largest and mean singular values [4]. We also propose a novel figure of merit based on 
the dependency between rows of a lead field matrix in underdetermined linear inverse problems and 
dependency between columns of a matrix in overdetermined linear inverse problems.

2. Methods

2.1. Condition number CN

A condition number with respect to the 2L norm, )(LCN , is defined as

LLLCN )( , (2)



where denotes the 2L norm. 
This condition number is equal to the ratio of the largest and the smallest singular value of a matrix 

L . It is used as an indicator for the stability of the inversion process [1], or as a priori accuracy 
estimator for the inverse problem [2].  

2.2. Skeel condition number
The Skeel condition number is first proposed for square matrices in [3] and then generalized to 

rectangular matrices in [4]. It is defined as
LLLSkeel )( , (3) 

where indicates that all the elements of the matrices L and L  are replaced by their absolute 

values and denotes the 2L norm. 

2.3. Figure of merit 

The condition of a matrix can also be measured using the ratio between the largest and the mean of 
all n singular values [5], 
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where 1 represents the largest singular value. In fact, the measure can also be interpreted as the
average decay of the singular values, but inverted in order to get a similar behaviour as CN  [5]. 

2.4. Rows dependency RD
Geometrical interpretation of the linear dependency between a matrix row/column and a space

spanned by the all other rows/columns has been used before. The angle between a row of a matrix and a 
space spanned by all other rows is employed to estimate the degree of information this particular row 
adds to the other rows of a matrix [6]. If many rows add little or no additional information, the matrix is 
ill-conditioned. An approximate expression for the condition number CN of a well-scaled matrix in 
terms of the minimum angle between a column vector of a matrix and a linear subspace spanned by the 
remaining columns is derived in [7]. An interesting inequality is given in [8], showing that either the 
matrix is not well-scaled or the columns of a matrix are nearly dependent if the CN increases.   

Let 
T

21 ,...,, nlllL be a lead field matrix of an underdetermined problem, where il is the ith row 
vector of L and n corresponds to the number of sensors. By computing the mean value of the angles
among all il , we get a figure of merit of rows dependency, RD : 
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In order to indicate a well-conditioned matrix by a small value, as in the figures of merit presented 
above, a subtraction of each obtained angle from o90 is imposed in Eq. 5. indicates that the 

absolute values of the angles and of the differences are used. denotes the 2L norm. o0RD
corresponds to the set of linearly independent rows, while a set of parallel vectors is denoted by 

o90RD . In overdetermined problems, this figure of merit calculates angles between columns.

2.5. Numerical simulations
We investigated the influence of the number of sensors in an array on the figures of merit presented 

above. The number of sensors in the array is increased from 55 to 1515 , while keeping a constant 
grid of 1515 for the three component magnetic dipoles. Dipoles are placed in the area 

m)22.0m,02.0(),( maxmin xx , m)22.0m,02.0(),( maxmin yy , m09.0 underneath a sensor array. 



All the sensors are uniformly oriented along the z direction and placed in the area 
m)2.0m,0(),( maxmin xx , m)2.0m,0(),( maxmin yy .  

In a second simulation, we examined the influence of extensions of the source grid in both x and 
y directions on the presented figures of merit. We considered the grid of 1515 for the three 

component magnetic dipoles, m05.0 below the sensor array. The sensor area m)2.0m,0(),( maxmin xx ,
m)2.0m,0(),( maxmin yy contains 1010 sensors uniformly oriented in z direction. The extension of 

the source grid is varied from m04.0 (smaller than sensor area) to m04.0 (larger than sensor area).

3. Results
The dependencies of the condition number CN , rows dependency RD , figure of merit , and the 

Skeel condition number Skeel , on the number of sensors in x and y direction are presented in Fig.1a, 

Fig.1b, Fig.1c and Fig.1d, respectively. CN changes from 80.30 to 81082.7 , RD from 53.12 to 
33.17 , Skeel from 96.37 to 81000.9 and from 18.3 to 22.32 . The increase in CN and Skeel is 

seven orders of magnitudes larger compared to RD and . The figures CN and Skeel show a similar 
slope, when increasing the number of sensors.  

   

a) b)

c) d)
Figure 1. Dependence of measures of conditioning of a lead field matrix: a) Condition number with respect to 

2L norm, CN , b) Rows dependency RD , c) Figure of merit and d) Skeel condition number. 

Figure 2. The effect of increasing (positive values on abscissa) or reducing (negative values on abscissa) the 
square source grid area beyond the sensor area. 



Fig. 2 shows the dependencies of the condition number CN , rows dependency RD , figure of merit 
, and Skeel condition number Skeel on the extension of the source grid below the sensor area from 

m04.0 (smaller than sensor area) to m04.0 (larger than sensor area). The measures are normalized 
by their corresponding values for a source grid extension of m04.0 . All the figures are dropping when
extending the source grid. CN and Skeel show considerably larger decays than RD and .   

4. Discussion
Conditioning is a very important concept to be considered when solving linear inverse problems. 

Therefore, we compared four measures of conditioning: condition number with respect to the 2L norm, 
Skeel condition number, ratio between the largest and mean singular value and a newly formulated 
measure of angles between the rows of a matrix.

The condition number CN is well-known. However, it has several drawbacks [9]. First, it ignores a 
structure of a matrix with respect to scaling and/or sparsity. When the elements in one row or column of 
a matrix are significantly different in scale from the other elements, a condition number CN can be very 
high [10]. But, high condition number does not always mean a large sensitivity to error. This situation is 
known as artificial ill-conditioning [11]. 

The condition number CN is computed using only the largest and the smallest singular value, its 
computation might be numerically instable and it essentially depends on the smallest singular value. 
These drawbacks are partially overcome using the ratio between largest and the mean singular values of 
a matrix, defined as the figure of merit . It also represents an average decay of the singular values, but 
inverted in order to get similar behaviour as CN . It is numerically more robust to compute than the 
condition number CN . In addition, it does not essentially depend on the smallest singular value and it 
includes information on all singular values of a lead field matrix. 

Computation of the condition number CN requires both a solution space norm and a residual 

space norm. Different from CN , the Skeel condition number LL is defined entirely in terms of 

the solution space norm since the matrix LL is a mapping of the solution space onto itself. If used 

in overdetermined problems, the Skeel condition number defined as LL is invariant under column 

scaling. In the case of underdetermined problems, the Skeel defined as LL is invariant under row

scaling. The Skeel condition number is equal to one for any matrix where only the entries iil , are non-
zero. Therefore, an overestimation of the ill-conditioning using the condition number CN in the case of 
a matrix containing non-zero entries only on positions ii, is overcome using the Skeel condition 
number.  

A dependency between rows in underdetermined linear inverse problems is defined by a figure of 
merit RD . This measure of conditioning is calculated as the mean value of the angles between all the 
rows of a lead field matrix. The computation of RD does not require the singular value decomposition 
of a matrix and it enables the comparison of lead field matrices of different sizes. Furthermore, 
multiplication of all elements of a row by the same value influences only the norm of a row vector, but 
not the angles to other rows. Thus, RD is independent of row scaling. In overdetermined problems, this 
figure of merit calculates angles between columns and it is independent under column scaling. These 
features of the proposed figure RD are promising for further applications. 

Similar to CN , the low values of RD , and Skeel indicate a well conditioned linear inverse 
problem. We are aware of the influence of a matrix dimension on the condition number CN . Our future 
work will focus on comparison of these figures of merit keeping the dimensions of a matrix constant.
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