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Abstract. Conditioning is a very important factor to be considered when solving linear inverse
problems. Many different measures of conditioning exist, but some of them are not always numerically
stable or can indicate that the problem is ill-conditioned, even though in reality it is not. We
theoretically consider and numerically compare four figures of merit: the condition number with respect
to the L, norm, Skeel condition number, ratio of the largest and mean singular value of a matrix and a

novel figure of merit, based on the linear dependency between rows in underdetermined linear inverse
problems and between columns in overdetermined problems. Numerical simuations show that all the
figures of merit have low values when the linear inverse problem is well-conditioned and their values
increase if the condition decays. The newly proposed figure of merit has three advantages: it does not
require singular value decomposition, it enables the comparison of different sensor arrays and it is
independent of row and column scaling in underdetermined and overdetermind problems, respectively.
These features of the proposed figure of merit are promising for further applications.
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1. Introduction

In this paper, we consider a linear model describing the relationship between the three components
of the magnetic moments of magnetic dipoles 7 and one component of the measurement values of the
magnetic flux density 4, according to

L-im=h, (D
where L is a lead field matrix, L e R™™ _ The lead field matrix contains information about the sensor
setup and the source model.

When estimating the magnetic moments 7 from the magnetic flux density values 5, the condition
of the linear inverse problem becomes very important. Many approaches exist, which try to improve
this property of the linear inverse problem. The core measure, on which such improvement methods
rely, is the figure of merit indicating the condition of L. We consider and compare the following
figures of merit: condition number with respect to L, norm [1, 2], Skeel condition number [3] and the
ratio between largest and mean singular values [4]. We also propose a novel figure of merit based on
the dependency between rows of a lead field matrix in underdetermined linear inverse problems and
dependency between columns of a matrix in overdetermined linear inverse problems.

2. Methods

2.1. Condition number CN
A condition number with respect to the L, norm, CN(L), is defined as

CN(L) = |L]-|L*| . @)
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where ” ” denotes the L, norm.

This condition number is equal to the ratio of the largest and the smallest singular value of a matrix
L. It is used as an indicator for the stability of the inversion process [1], or as a priori accuracy
estimator for the inverse problem [2].

2.2. Skeel condition number

The Skeel condition number is first proposed for square matrices in [3] and then generalized to
rectangular matrices in [4]. It is defined as

Skeel(L) =|L|-|+]. (3)
where | | indicates that all the elements of the matrices L and L* are replaced by their absolute

values and ” ” denotes the L, norm.

2.3. Figure of merit p

The condition of a matrix can also be measured using the ratio between the largest and the mean of
all n singular values [5],

p(ry=— 2B
—7§:G(L)

where o, represents the largest singular value. In fact, the measure can also be interpreted as the

4)

average decay of the singular values, but inverted in order to get a similar behaviour as CN [5].

2.4. Rows dependency RD

Geometrical interpretation of the linear dependency between a matrix row/column and a space
spanned by the all other rows/columns has been used before. The angle between a row of a matrix and a
space spanned by all other rows is employed to estimate the degree of information this particular row
adds to the other rows of a matrix [6]. If many rows add little or no additional information, the matrix is
ill-conditioned. An approximate expression for the condition number CN of a well-scaled matrix in
terms of the minimum angle between a column vector of a matrix and a linear subspace spanned by the
remaining columns is derived in [7]. An interesting inequality is given in [8], showing that either the
matrix is not well-scaled or the columns of a matrix are nearly dependent if the CN increases.

Let L= [fl,fz,...,fnr be a lead field matrix of an underdetermined problem, where l: is the i" row
vector of L and n corresponds to the number of sensors. By computing the mean value of the angles

among all l: , we get a figure of merit of rows dependency, RD :

2 2 e I

i=1 j=i+1

(5)
ZKn—Zﬂ

In order to indicate a well-conditioned matrix by a small value, as in the figures of merit presented
above, a subtraction of each obtained angle from 90° is imposed in Eq. 5. | | indicates that the
absolute values of the angles and of the differences are used. ” ” denotes the L, norm. RD=0°

corresponds to the set of linearly independent rows, while a set of parallel vectors is denoted by
RD =90°. In overdetermined problems, this figure of merit calculates angles between columns.

2.5. Numerical simulations

We investigated the influence of the number of sensors in an array on the figures of merit presented
above. The number of sensors in the array is increased from 5x5 to 15x15, while keeping a constant
grid of 15x15 for the three component magnetic dipoles. Dipoles are placed in the area
(Xmin>X*max ) = (=0.02m,0.22m) , (¥1min>Vmax) = (=0.02m,0.22m), 0.09m underneath a sensor array.
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z—direction and placed in the area

(Xmin»>*max) = (0m,0.2m), (¥min»>Vmax) = (0m,0.2m).
In a second simulation, we examined the influence of extensions of the source grid in both x and
y directions on the presented figures of merit. We considered the grid of 15x15 for the three

component magnetic dipoles, 0.05m below the sensor array. The sensor area (x,,i,,¥max) = (0m,0.2m),
(¥min>Vmax) = (0m,0.2m) contains 10x10 sensors uniformly oriented in z — direction. The extension of
the source grid is varied from —0.04m (smaller than sensor area) to +0.04m (larger than sensor area).

3. Results

The dependencies of the condition number CN , rows dependency RD , figure of merit p, and the
Skeel condition number Skeel, on the number of sensors in x and y direction are presented in Fig.1a,
Fig.1b, Fig.lc and Fig.1d, respectively. CN changes from 30.80 to 7.82x10%, RD from 12.53 to
17.33, Skeel from 37.96 to 9.00x10% and p from 3.18 to 32.22. The increase in CN and Skeel is

seven orders of magnitudes larger compared to RD and p. The figures CN and Skeel show a similar

slope, when increasing the number of sensors.
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Figure 1. Dependence of measures of conditioning of a lead field matrix: a) Condition number with respect to

L, norm, CN , b) Rows dependency RD , c) Figure of merit p and d) Skeel condition number.
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Figure 2. The effect of increasing (positive values on abscissa) or reducing (negative values on abscissa) the
square source grid area beyond the sensor area.
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Fig. 2 shows the dependencies of the condition number CN , rows dependency RD , figure of merit
p, and Skeel condition number Skeel on the extension of the source grid below the sensor area from

-0.04m (smaller than sensor area) to +0.04m (larger than sensor area). The measures are normalized
by their corresponding values for a source grid extension of —0.04m . All the figures are dropping when
extending the source grid. CN and Skeel show considerably larger decays than RD and p.

4. Discussion

Conditioning is a very important concept to be considered when solving linear inverse problems.
Therefore, we compared four measures of conditioning: condition number with respect to the L, norm,

Skeel condition number, ratio between the largest and mean singular value and a newly formulated
measure of angles between the rows of a matrix.

The condition number CN is well-known. However, it has several drawbacks [9]. First, it ignores a
structure of a matrix with respect to scaling and/or sparsity. When the elements in one row or column of
a matrix are significantly different in scale from the other elements, a condition number CN can be very
high [10]. But, high condition number does not always mean a large sensitivity to error. This situation is
known as artificial ill-conditioning [11].

The condition number CN is computed using only the largest and the smallest singular value, its
computation might be numerically instable and it essentially depends on the smallest singular value.
These drawbacks are partially overcome using the ratio between largest and the mean singular values of
a matrix, defined as the figure of merit p . It also represents an average decay of the singular values, but
inverted in order to get similar behaviour as CN . It is numerically more robust to compute than the
condition number CN . In addition, it does not essentially depend on the smallest singular value and it
includes information on all singular values of a lead field matrix.

Computation of the condition number CN requires both a solution space norm and a residual
]|

space norm. Different from CN , the Skeel condition number is defined entirely in terms of

the solution space norm since the matrix |L| L

is a mapping of the solution space onto itself. If used

in overdetermined problems, the Skeel condition number defined as H|L| . ‘L*‘ is invariant under column

is invariant under row

2

scaling. In the case of underdetermined problems, the Skeel defined as

scaling. The Skeel condition number is equal to one for any matrix where only the entries /;; are non-

zero. Therefore, an overestimation of the ill-conditioning using the condition number CN in the case of
a matrix containing non-zero entries only on positions i,/ is overcome using the Skeel condition

number.

A dependency between rows in underdetermined linear inverse problems is defined by a figure of
merit RD . This measure of conditioning is calculated as the mean value of the angles between all the
rows of a lead field matrix. The computation of RD does not require the singular value decomposition
of a matrix and it enables the comparison of lead field matrices of different sizes. Furthermore,
multiplication of all elements of a row by the same value influences only the norm of a row vector, but
not the angles to other rows. Thus, RD is independent of row scaling. In overdetermined problems, this
figure of merit calculates angles between columns and it is independent under column scaling. These
features of the proposed figure RD are promising for further applications.

Similar to CN, the low values of RD, p and Skeel indicate a well conditioned linear inverse

problem. We are aware of the influence of a matrix dimension on the condition number CN . Our future
work will focus on comparison of these figures of merit keeping the dimensions of a matrix constant.
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