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Abstract. The simulation of the electrical activity in cardiac cells is known to require a large number of 
stiff ordinary differential equations (ODEs). This system of ODEs has been continually developed to 
provide an increasingly detailed description of cellular physiology. An efficient simulation is needed to 
contribute significantly in the numerical solution of two and three dimensional electrical activity of the 
myocardium. In this paper, we will be exploring the usage and efficiency of Gauss-type nested implicit 
Runge-Kutta technique to solve cardiac cell models. The method is of order 4 and has only explicit 
internal stage that leads to practical implementations. Comparison with other numerical methods 
employed in the context of electrocardiology will be presented. 
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1. Introduction 
Due to the enormous and often prohibitive cost of developing new drugs for treatment of heart 

conditions, the usage of mathematical models in the early development stages is increasing. This can be 
attributable to the fact that accurate models can decrease the amount of physical trials needed and 
therefore greatly decrease the cost. Current electrophysiological models vary greatly in both complexity 
and accuracy. These models often involve a set of partial differential equation coupled with a large 
number of stiff ODEs (see [Sundnes et al., 2005] and [Vigmond et al., 2002]). These ODEs attempt to 
simulate the flow of ionic currents present in the cellular level of the heart which can be used to predict 
the resulting electrical activity. However, the stiffness has the effect of decreasing the speed of the 
solving process since the stability is often the limiting factor for the solution and therefore explicit and 
semi-implicit schemes are not suitable for simulating cardiac cell models. The reader is referred to 
[Hairer and Wanner, 1992], [Shampine, 1994] and [Hundsdorfer and Verwer, 2003], for more details 
about stability restriction of explicit and semi-implicit methods. 

One way to overcome the stiffness difficulties is the use of stable numerical techniques and 
therefore implicit schemes are nearly always necessary for obtaining efficient results. A wide range of 
implicit methods have been developed for stiff ODE systems. These are normally difficult to implement 
in a robust manner, however, a special class of implicit methods called Singly diagonally implicit 
Runge-Kutta methods (SDIRK) is often used to solve stiff ODEs (see [Hairer and Wanner, 1992]). In 
the context of electrocardiology, a third order method of this class with an explicit first stage 
(ESDIRK3) has been used for Winslow model in [Sundnes et al., 2001]. Other numerical methods have 
been also explored for cardiac cell models. In [Spiteri and Dean, 2008], an implicit-explicit Runge-
Kutta method (IMEX-RK) was used in order to decrease the added effort required by the implicit 
methods by using a splitting technique. In this contribution, the performance of several numerical 
methods, including the Rush-Larsen method [Rush and Larsen, 1978], for approximating solutions to 
ODEs found in 4 popular mathematical models of cardiac electrical activity was instigated and 
compared to IMEX-RK method. Furthermore, in [Ying et al., 2008] the backwards Euler method as 
well as a second-order one-step two-stage composite backward differentiation formula (C-BDF2) was 
implemented using  fixed time step size and deemed simple to implement as well as giving increased 
efficiency. Additionally, the non standard finite difference methods (NSFD), which are drastically more 
efficient than the forward Euler method, were investigated in [Maclachlan et al., 2007]. 

In this paper, we will be exploring the usage and efficiency of a Gauss-type nested implicit Runge-
Kutta (NIRK) technique in the application of cardiac cell models. This method has been introduced in 



[Kulikov and Shindin, 2009]. The method is A-stable, stiffly accurate and has a cheap practical 
implementation by virtue of its explicit internal stages. The stability and low computational effort make 
NIRK ideal for implementation of electrophysiological models which require both. Numerical 
simulations have been performed using two cell models, the Luo-Rudy model [Luo and Rudy, 1991] of 
guinea-pig ventricular tissue that consists of 8 non-linear ODEs and takes into consideration 6 ionic 
currents, and the Hund and Rudy model [Hund and Rudy, 2004] that is used to simulate canine 
ventricular action potentials and consists of a system of 29 ordinary differential equations. For both 
models, a comparison between the proposed numerical method, ESDIRK3, and SDIRK4 will be 
presented.  

The organization of this paper is as follows. In Section II, the Gauss-type nested implicit Runge-
Kutta is introduced and the singly diagonally implicit Runge-Kutta method is briefly recalled. Section 
III is devoted to numerical results showing the performance of the proposed method using the first Luo-
Rudy model and Hund and Rudy canine ventricular model. Finally, section IV provides a summary of 
the proposed technique. 

2. Numerical Techniques 
 
As mentioned, modeling the action potential of a single cell involves a stiff system of ODEs of the 

form: 
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 where mV  is transmembrane potential, mC  is the membrane capacitance, stI  is the stimulus and ionI  
is the total transmembrane ionic current. In the Luo-Rudy model, we have 7 additional ODEs and in the 
Hund and Rudy model we have 28 additional ODEs which are non-linear. Full details and complete 
expressions of the ODE equations for Luo-Rudy model and Hund and Rudy model can be found in 
[Luo and Rudy, 1991], and [Hund and Rudy, 2004] respectively. Thus, this paper will focus on 
numerical techniques to solve the following system  
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 Where 0t  and ft  are initial and final time respectively and 
0y  is the initial solution.  

2.1. Singly Diagonally Implicit Runge-Kutta 

SDIRK methods are often considered efficient when solving stiff system of the form (2) (see 
[Hairer and Wanner, 1992]). An SDIRK4 method is employed in this paper, it has 5-stages, L-stability 
and is of order 4. The Butcher tableau defining this technique is presented in table 1.  

Table 1. Tables Butcher tableau of SDIRK 4 

1c  γ   

2c  21a  γ   

3c  31a  32a  γ   

4c  41a  42a  43a  γ   

5c  51a  52a  53a  54a  γ  

 1b  2b  3b  4b  5b  

The coefficients ija , ib  and γ  are provided in [Hairer and Wanner, 1992] on page 100.   
A third order method of this class with explicit first stage (ESDIRK3) is also employed in this 

paper.  This method has been used in the context of electrocardiology in  [Sundnes et al., 2001] and the 
reader is referred to this paper for more details about ESDIRK3. 

2.2. Nested Implicit Runge-Kutta 

All one-step methods for solving ODEs system of the form (2) consider  

 ),,,,(= 111 hytythyy kkkkkk +++ + φ  



where h  is the time step size. The Nested Implicit Runge-Kutta (NIRK) of order 4 formula 

considers, at each subinterval ],[ 1+kk tt , a two-point quadrature formula of the form  
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 where  

 )),,(),((= 111211112111 +++ +++ kkkkkk ytfdytfdhyayax  
and  

 )).,(),((= 112221122212 +++ +++ kkkkkk ytfdytfdhyayax  
 

The coefficients ija , ib , ic  , and ijd  for 1,2=, ji  are fixed and given by  
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= +θ  is employed for all numerical results. This method is of order 4 and A -stable. 

For theoretical details the reader is referred to [Kulikov and Shindin, 2009]. It is clear that NIRK 
methods (3) possess explicit internal stages that are easily reduced to a single nonlinear equation with 

respect to 1+ky  at time step 1+kt . This nonlinear equation is of the same dimension as the cell model, 
which make this technique very attractive for solving the stiff system of ODEs involved in 
electrocardiology. Since NIRK is a Runge-Kutta scheme, its Butcher tableau can be given by 

Table 2. Tables Butcher tableau of SDIRK 4  
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A Newton method is used to solve the non-linear systems. However, the full Jacobian of 
method (3) can be replaced with a simplified one, see [Kulikov and Shindin, 2006], that involves, after 
starting with an initial value, iterations of the form  
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k yyy 111 = +++ −Δ  and J  is the jacobian of the function f  in the system (2). 

Recomputing the Jacobian at each time step can be expensive and therefore, if the time step is 
sufficiently small, it is instead approximated by  
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A similar technique is used to solve the nonlinear systems in the SDIRK4 and ESDIRK3 methods. 
This feature leads to a cheap practical implementation for both numerical methods employed in this 
paper. 



3. Numerical Results 
In this section, the performance of  NIRK method described in the previous section will be 

presented. Since there is no exact solution for cardiac cell models, all numerical results will be 
compared to a reference solution. This solution is obtained by using the Matlab solver ode45 that is 
based on the explicit Dormand-Prince method of order 5 (see [Dormand and Prince, 1980] and [Hairer 
et al., 1993]). Very small absolute and relative tolerances are used for ode45 to generate a reference 
solution with more than 200000 time steps. 

To assess the reliability and accuracy of the suggested technique, all the quantitative results 

will be presented using −∞L norm, noted globale , and −2L norm, noted 2e , of the error between the 

numerical and reference solution. The form of these norms is  
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where the difference || refVVm −  is evaluated at N  equally spaced points within the interval 

],[ 0 ftt . A choice of 200=N  is used for all numerical results. 

For both the Luo–Rudy I and the Hund and Rudy models, the initial values used for the 

transmembrane potential mV  are around the threshold value to produce the explicit stimulus current. 
Two different time intervals are used, [0,450]ms for Luo–Rudy model, and [0,200]ms for Hund and 
Rudy model which correspond to one cycle. 

In table 3, different values of the two norms globale , and 2e  for the Luo-Rudy model are 

presented. These norms are calculated for different fixed time steps h  to show the evolution of the 
error according to the time step. For the Hund and Rudy model, similar numerical results are produced 
and the performance of NIRK4 is reported in table 4. 

Table 3. Illustration of the error with different value of h  

 
 

  
 
  
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

   LuoRudy I: Step-Size 0.1=h     
Methods global error 

2e  error CPU 

ESDIRK3 2.81e-1 6.28e-1 2.33e0 
Sdirk4 5.36e-2 1.29e-1 2.78e0 
NIRK4 3.14e-2 7.34e-2 2.72e0 

LuoRudy I: Step-Size 0.05=h  
Methods global error 

2e  error CPU 

Esdirk3 5.04e-3 1.24e-2 4.34e0 
Sdirk4 2.63e-3 6.96e-3 5.39e0 
NIRK4 8.10e-4 1.12e-3 5.01e0 

LuoRudy I: Step-Size 0.025=h  
Methods global error 

2e  error CPU 

Esdirk 3 4.83e-4 1.85e-3 0.86e1 

Sdirk4 1.71e-4 4.16e-4 1.06e1 
NIRK4 2.14e-5 4.66e-5 0.92e1 



 
 

Table 4. Illustration of the error with different value of h  

 

   Hund and Rudy: Step-Size 0.1=h     
Methods global error 

2e  error CPU 

Esdirk3 1.25e-1 1.06e-1 7.44e1 
Sdirk4 1.73e-2 8.95e-2 8.22e1 
NIRK4 1.04e-2 4.68e-2 7.76e1 

Hund and Rudy: Step-Size 0.05=h  
Methods global error 

2e  error CPU 

Esdirk3 1.69e-1 6.37e-2 1.47e2 
Sdirk4 1.15e-3 5.94e-3 1.61e2 
NIRK4 1.03e-3 1.06e-3 1.52e2 

Hund and Rudy: Step-Size 0.025=h  
Methods global error 

2e  error CPU 

Esdirk3 2.16e-3 1.11e-2 2.93e2 
Sdirk4 8.55e-5 4.43e-4 3.19e2 
NIRK4 7.01e-5 7.76e-5 2.99e2 

 
As can be clearly seen from the above tables the performance of NIRK4 is superior to that of 

the commonly used, ESDIRK3 and SDIRK4 methods. In these numerical tests, we can see that at every 

step-size and with both models we gain an advantage in accuracy by obtaining less global and 2e  errors. 
However, unlike most numerical solvers, this increase in accuracy does not come at the expense of 
computational time; in all the numerical tests done in this study, NIRK4 took less time to solve the 
models than ESDIRK3 and SDIRK4 when comparing solutions with the same level of error. Therefore, 
with the increase in both accuracy and decrease in computational time, we have seen that NIRK4 is an 
adequate method when solving a stiff system of ODEs involved in electrophysiological cardiac cell 
models.  

When the ODEs are solved as part of an operator splitting algorithm for solving the bidomain 
or monodomain models, the global accuracy will be limited by the splitting error and it is therefore not 
recommended to apply ODE solvers with high order of accuracy. However, NIRK4 can present an 
advantage in the computational time as can be seen when compared to ESDIRK 3 that was employed in 
[Sundnes et al., 2001] for simulating the bidomain model. 

 

4. Conclusions 
In this paper, a nested implicit Runge-Kutta method of order 4 was presented in the context of 

electrocardiology. The efficiency of the NIRK method was presented using two cell models, the Luo–
Rudy I and the Hund and Rudy models. A comparison with ESDIRK3, and SDIRK4 methods, that are 
commonly employed for solving ODEs involved in modeling cardiac cell activity, was also presented 
showing clearly the advantage of the proposed technique. Overall, the stability and the explicit internal 
stage of the NIRK method lead to cheap implementation and accurate numerical solutions in 
electrocardiology. 

Only fixed time steps were used in this paper. NIRK is an embedded Runge-Kutta method and 
therefore variable time step sizes can be implemented. A comparison with other implicit embedded 
Runge-Kutta methods used for cardiac cell models is necessary to fully establish the potential and 
performance of the proposed method. 
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