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Abstract. The simulation of the electrical activity in cardiac cells is known to require a large number of
stiff ordinary differential equations (ODEs). This system of ODEs has been continually developed to
provide an increasingly detailed description of cellular physiology. An efficient simulation is needed to
contribute significantly in the numerical solution of two and three dimensional electrical activity of the
myocardium. In this paper, we will be exploring the usage and efficiency of Gauss-type nested implicit
Runge-Kutta technique to solve cardiac cell models. The method is of order 4 and has only explicit
internal stage that leads to practical implementations. Comparison with other numerical methods
employed in the context of electrocardiology will be presented.
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1. Introduction

Due to the enormous and often prohibitive cost of developing new drugs for treatment of heart
conditions, the usage of mathematical models in the early development stages is increasing. This can be
attributable to the fact that accurate models can decrease the amount of physical trials needed and
therefore greatly decrease the cost. Current electrophysiological models vary greatly in both complexity
and accuracy. These models often involve a set of partial differential equation coupled with a large
number of stiff ODEs (see [Sundnes et al., 2005] and [Vigmond et al., 2002]). These ODEs attempt to
simulate the flow of ionic currents present in the cellular level of the heart which can be used to predict
the resulting electrical activity. However, the stiffness has the effect of decreasing the speed of the
solving process since the stability is often the limiting factor for the solution and therefore explicit and
semi-implicit schemes are not suitable for simulating cardiac cell models. The reader is referred to
[Hairer and Wanner, 1992], [Shampine, 1994] and [Hundsdorfer and Verwer, 2003], for more details
about stability restriction of explicit and semi-implicit methods.

One way to overcome the stiffness difficulties is the use of stable numerical techniques and
therefore implicit schemes are nearly always necessary for obtaining efficient results. A wide range of
implicit methods have been developed for stiff ODE systems. These are normally difficult to implement
in a robust manner, however, a special class of implicit methods called Singly diagonally implicit
Runge-Kutta methods (SDIRK) is often used to solve stiff ODEs (see [Hairer and Wanner, 1992]). In
the context of electrocardiology, a third order method of this class with an explicit first stage
(ESDIRK3) has been used for Winslow model in [Sundnes et al., 2001]. Other numerical methods have
been also explored for cardiac cell models. In [Spiteri and Dean, 2008], an implicit-explicit Runge-
Kutta method (IMEX-RK) was used in order to decrease the added effort required by the implicit
methods by using a splitting technique. In this contribution, the performance of several numerical
methods, including the Rush-Larsen method [Rush and Larsen, 1978], for approximating solutions to
ODEs found in 4 popular mathematical models of cardiac electrical activity was instigated and
compared to IMEX-RK method. Furthermore, in [Ying et al., 2008] the backwards Euler method as
well as a second-order one-step two-stage composite backward differentiation formula (C-BDF2) was
implemented using fixed time step size and deemed simple to implement as well as giving increased
efficiency. Additionally, the non standard finite difference methods (NSFD), which are drastically more
efficient than the forward Euler method, were investigated in [Maclachlan et al., 2007].

In this paper, we will be exploring the usage and efficiency of a Gauss-type nested implicit Runge-
Kutta (NIRK) technique in the application of cardiac cell models. This method has been introduced in
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[Kulikov and Shindin, 2009]. The method is A-stable, stiffly accurate and has a cheap practical
implementation by virtue of its explicit internal stages. The stability and low computational effort make
NIRK ideal for implementation of electrophysiological models which require both. Numerical
simulations have been performed using two cell models, the Luo-Rudy model [Luo and Rudy, 1991] of
guinea-pig ventricular tissue that consists of 8 non-linear ODEs and takes into consideration 6 ionic
currents, and the Hund and Rudy model [Hund and Rudy, 2004] that is used to simulate canine
ventricular action potentials and consists of a system of 29 ordinary differential equations. For both
models, a comparison between the proposed numerical method, ESDIRK3, and SDIRK4 will be
presented.

The organization of this paper is as follows. In Section II, the Gauss-type nested implicit Runge-
Kutta is introduced and the singly diagonally implicit Runge-Kutta method is briefly recalled. Section
IIT is devoted to numerical results showing the performance of the proposed method using the first Luo-
Rudy model and Hund and Rudy canine ventricular model. Finally, section IV provides a summary of
the proposed technique.

2. Numerical Techniques

As mentioned, modeling the action potential of a single cell involves a stiff system of ODEs of the
form:

v, 1
?__Ci([[(m-i_l.v)‘ (1)

m

where V,, is transmembrane potential, Cm is the membrane capacitance, I is the stimulus and 1},
is the total transmembrane ionic current. In the Luo-Rudy model, we have 7 additional ODEs and in the
Hund and Rudy model we have 28 additional ODEs which are non-linear. Full details and complete
expressions of the ODE equations for Luo-Rudy model and Hund and Rudy model can be found in
[Luo and Rudy, 1991], and [Hund and Rudy, 2004] respectively. Thus, this paper will focus on
numerical techniques to solve the following system

dy 0
E:f(t’y(t))’ te[to’tf]’ y(t()):y . )
Where 7y and t £ are initial and final time respectively and yo is the initial solution.

2.1. Singly Diagonally Implicit Runge-Kutta

SDIRK methods are often considered efficient when solving stiff system of the form (2) (see
[Hairer and Wanner, 1992]). An SDIRK4 method is employed in this paper, it has 5-stages, L-stability
and is of order 4. The Butcher tableau defining this technique is presented in table 1.

Table 1. Tables Butcher tableau of SDIRK 4

o |7

G |ay /4

G |4y Az 7

Cy |y Ay Ay Y

Cs ds, asy As3 Asy /4
bl b 2 bs b 4 bi

The coefficients 4 , bi and 7 are provided in [Hairer and Wanner, 1992] on page 100.

A third order method of this class with explicit first stage (ESDIRK3) is also employed in this
paper. This method has been used in the context of electrocardiology in [Sundnes et al., 2001] and the
reader is referred to this paper for more details about ESDIRK3.

2.2. Nested Implicit Runge-Kutta
All one-step methods for solving ODEs system of the form (2) consider

Vst = Vi ThOW, yitisys Yiws h)
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where /1 is the time step size. The Nested Implicit Runge-Kutta (NIRK) of order 4 formula

considers, at each subinterval [7 sl k+1] , a two-point quadrature formula of the form

Vi =V th(b f(t, +ch,x)+b,f(t, +cyh,x,)), 3)

where

X, =4yt ay Y, Hhld @,y ) +dn f @, Yien)s

and

Xy = Ay Yy Ay Y H Ay [y ) +do f (s i)

The coefficients ¢, bi, ¢ ,and dly for i»J =1,2 are fixed and given by

a,=6, a,=1-6, a, =1-6,anda,, =6.

bl=l, b2=1, c1:3_\6,andc2=3+\6.
2 2 6 6
and
60-2-3 60—4-+3
dllzi’ dlzzis
12 12
0 =20 gy, 0042008

1,23 . , ,
where 6= E+T is employed for all numerical results. This method is of order 4 and A -stable.

For theoretical details the reader is referred to [Kulikov and Shindin, 2009]. It is clear that NIRK
methods (3) possess explicit internal stages that are easily reduced to a single nonlinear equation with

respect to Y41 at time step f441. This nonlinear equation is of the same dimension as the cell model,

which make this technique very attractive for solving the stiff system of ODEs involved in
electrocardiology. Since NIRK is a Runge-Kutta scheme, its Butcher tableau can be given by

Table 2. Tables Butcher tableau of SDIRK 4

0 0 0 0 0
¢ 6(c, +6)-5 1-6 1-6 6(c, +0)-7
12 2 2 12
I-c 7-6(c, +6) [ 0 5-6(c, +6)
12 2 2 12
1 0 L 1 0
2 2
0 1 1 0
2 2

A Newton method is used to solve the non-linear systems. However, the full Jacobian of
method (3) can be replaced with a simplified one, see [Kulikov and Shindin, 2006], that involves, after
starting with an initial value, iterations of the form

h
( —ZJVAy,iH =y +h(b f(t, +ch,x})+b, f (1, +ch, x5)),

where AJ’/IM = y/lm _)’/IM and J is the jacobian of the function S in the system (2).

Recomputing the Jacobian at each time step can be expensive and therefore, if the time step is
sufficiently small, it is instead approximated by
of
J= 7(tk’)’1?+1)-
dy

A similar technique is used to solve the nonlinear systems in the SDIRK4 and ESDIRK3 methods.
This feature leads to a cheap practical implementation for both numerical methods employed in this
paper.
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3. Numerical Results

In this section, the performance of NIRK method described in the previous section will be
presented. Since there is no exact solution for cardiac cell models, all numerical results will be
compared to a reference solution. This solution is obtained by using the Matlab solver ode45 that is
based on the explicit Dormand-Prince method of order 5 (see [Dormand and Prince, 1980] and [Hairer
et al., 1993]). Very small absolute and relative tolerances are used for ode45 to generate a reference
solution with more than 200000 time steps.

To assess the reliability and accuracy of the suggested technique, all the quantitative results

will be presented using L~ —norm, noted €giobal, and L* —norm, noted €, of the error between the
numerical and reference solution. The form of these norms is
€ op =Max |V, —V .|

global ref '

and

e, = |[7 1V, =V, P

ref ’
0

where the difference |Vm — Vit | is evaluated at N equally spaced points within the interval

7y, f] . A choice of N =200 is used for all numerical results.

For both the Luo—Rudy I and the Hund and Rudy models, the initial values used for the
transmembrane potential V., are around the threshold value to produce the explicit stimulus current.
Two different time intervals are used, [0,450]ms for Luo—Rudy model, and [0,200]ms for Hund and
Rudy model which correspond to one cycle.

In table 3, different values of the two norms Caoba, and € for the Luo-Rudy model are

presented. These norms are calculated for different fixed time steps h to show the evolution of the
error according to the time step. For the Hund and Rudy model, similar numerical results are produced
and the performance of NIRK4 is reported in table 4.

Table 3. lilustration of the error with different value of h

LuoRudy I: Step-Size h=0.1
Methods global error e, error CPU
ESDIRK3 2.8le-1 6.28e-1 2.33e0
Sdirk4 5.36e-2 1.29e-1 2.78e0
NIRK4 3.14e-2 7.34e-2 2.72e0
LuoRudy I: Step-Size /1 = 0.05
Methods global error e, error CpPU
Esdirk3 5.04e-3 1.24e-2 4.34e0
Sdirk4 2.63e-3 6.96¢-3 5.39e0
NIRK4 8.10e-4 1.12e-3 5.01e0
LuoRudy I: Step-Size 1 =0.025
Methods global error e, error CPU
Esdirk 3 4.83e-4 1.85e-3 0.86el
Sdirk4 1.71e-4 4.16e-4 1.06el
NIRK4 2.14e-5 4.66e-5 0.92el
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Table 4. Illustration of the error with different value of h

Hund and Rudy: Step-Size 7 =0.1

Methods global error e, error CPU
Esdirk3 1.25¢e-1 1.06e-1 7.44el
Sdirk4 1.73e-2 8.95e-2 8.22el
NIRK4 1.04e-2 4.68e-2 7.76el

Hund and Rudy: Step-Size 1 =0.05

Methods global error e, error CPU
Esdirk3 1.69¢e-1 6.37e-2 1.47¢2
Sdirk4 1.15e-3 5.94e-3 1.61e2
NIRK4 1.03e-3 1.06e-3 1.52¢2

Hund and Rudy: Step-Size £ = 0.025

Methods global error e, error CPU
Esdirk3 2.16e-3 1.11e-2 2.93e2
Sdirk4 8.55e-5 4.43e-4 3.19e2
NIRK4 7.01e-5 7.76e-5 2.99¢2

As can be clearly seen from the above tables the performance of NIRK4 is superior to that of
the commonly used, ESDIRK3 and SDIRK4 methods. In these numerical tests, we can see that at every

step-size and with both models we gain an advantage in accuracy by obtaining less global and €2 errors.
However, unlike most numerical solvers, this increase in accuracy does not come at the expense of
computational time; in all the numerical tests done in this study, NIRK4 took less time to solve the
models than ESDIRK3 and SDIRK4 when comparing solutions with the same level of error. Therefore,
with the increase in both accuracy and decrease in computational time, we have seen that NIRK4 is an
adequate method when solving a stiff system of ODEs involved in electrophysiological cardiac cell
models.

When the ODEs are solved as part of an operator splitting algorithm for solving the bidomain
or monodomain models, the global accuracy will be limited by the splitting error and it is therefore not
recommended to apply ODE solvers with high order of accuracy. However, NIRK4 can present an
advantage in the computational time as can be seen when compared to ESDIRK 3 that was employed in
[Sundnes et al., 2001] for simulating the bidomain model.

4. Conclusions

In this paper, a nested implicit Runge-Kutta method of order 4 was presented in the context of
electrocardiology. The efficiency of the NIRK method was presented using two cell models, the Luo—
Rudy I and the Hund and Rudy models. A comparison with ESDIRK3, and SDIRK4 methods, that are
commonly employed for solving ODEs involved in modeling cardiac cell activity, was also presented
showing clearly the advantage of the proposed technique. Overall, the stability and the explicit internal
stage of the NIRK method lead to cheap implementation and accurate numerical solutions in
electrocardiology.

Only fixed time steps were used in this paper. NIRK is an embedded Runge-Kutta method and
therefore variable time step sizes can be implemented. A comparison with other implicit embedded
Runge-Kutta methods used for cardiac cell models is necessary to fully establish the potential and
performance of the proposed method.
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