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Abstract. Cognitive neuroscientists often conduct trial-based experiments, having two or more events
(e.g., sensory stimulus and motor response) per trial, conjointly with neurophysiological time series
acquisition and analysis of event-related transient brain activity. Hansen decomposition [Hansen,
1983] is a frequency-domain technique for separating multiple overlapping event-related transients.
However, the theory assumes that the brain is a linear system and, consequently, that event clusters
within a trial are not associated with interactive (e.g., sensorimotor integrative) brain processes. The
Volterra theory of nonlinear systems includes linear systems as a first approximation, adding higher-
order correction terms to accommodate interactions. This paper presents an event-related
specialization of Volterra models, and formulates how the kernels which characterize such models may
be estimated from multi-trial data via Hansen’s computationally efficient approach. Volterra-Hansen
estimation of primary event-related transients and secondary inter-event modulations makes demands
on experimental design, which may be evaluated prior to physiological acquisition. Methods for
analysis and source estimation of event-related transients may also be applied to inter-event
modulations, thereby facilitating the study and localization of integrative processes in the brain.
Keywords: Trial-Based Cognitive Paradigm; ERP; ERF; Overlapping Waveform Separation; Nonlinear System Identification

1. Introduction

Experimental paradigms designed with multi-event trials (e.g., cue-stimulus-response) are
commonly used in cognitive neuroscience in conjunction with brain physiology measures such as
event-related electric potentials (ERPs) and magnetic fields (ERFs). Simple averaging of physiological
data epochs across trials after alignment to selected events has been the primary technique for
estimating transient waveforms that reflect brain activity which is coupled in phase to experimental
events. However, event-related transients are likely to overlap in time within each trial (e.g., a cue-
related transient may overlap with a stimulus-related transient which may overlap with a response-
related transient). In addition, the brain naturally relates different events within a trial so that, in some
sense, the events (or their representations) inferact in the brain. For example, the brain mediates a
behavioral response to a sensory stimulus in the context of an informative cue. The cognitive
neuroscientist’s main interest may be precisely with how the brain handles such inter-event
relationships. Yet, if the brain were simply a linear system—in which case cue-related, stimulus-
related, and response-related transients could be cleanly disentangled—then purely separable event-
related transients would be independent, i.e., non-interacting, contrary to fact and actual scientific
interest. Therefore, a combined linear-nonlinear approach is called for, in order to isolate event-related
transients while also facilitating the study of how they are modulated in the context of other events.

Hansen [1983] proposed a linear theory of event-related transients, and devised an associated
frequency domain technique for extracting underlying waveforms which overlap in multi-trial
experimental data. Essentially, Hansen decomposition applies the discrete Fourier transform (DFT) in
order to convert a system of waveform convolution equations to a series of complex scalar linear
equations. These are solved independently at each frequency bin for the Fourier representation of the
underlying event-related transients, which finally are reconstructed in the time domain via the inverse
DFT. Hansen applied the technique to the problem of separating stimulus-related and response-related
waveforms in EEG data acquired with a reaction-time task. McGill and Dorfman [1984] independently
devised the method, which also has been studied by Pflieger [1991], Zhang [1998], and (more recently)
Yin et al. [2009]. The related but distinct Adjar technique [Woldorff, 1993] also is based on a linear
theory of transients, but operates iteratively in the time domain to resolve adjacent responses in a
stream of events which are not necessarily clustered as multi-event trials.

Volterra theory [Volterra, 1930] is a series approximation approach that can extend linear systems
(first-order terms) to nonlinear systems by adding higher-order terms [Schetzen, 1980]. It has been

34



International Journal of Bioelectromagnetism
Vol. 14, No. 1, pp. 34-39, 2012

applied to evoked potential and other neurophysiological data [Sclabassi et al., 1988a] [Shi and Hecox,
1991], to fMRI data [Friston et al., 1998], and as an approach for functional multimodal integration
[Pflieger & Greenblatt, 2000], but has received little attention among cognitive ERP/ERF researchers.
This paper presents a unified Volterra-Hansen theory with the dual aims of (i) separating event-
related transients which cluster together on single trials, while also (ii) quantifying inter-event
modulations, i.e., the manner in which an event-related transient may be modified in the context of
other events which co-occur on the same experimental trial. Section 2 presents a specialization of
Volterra theory for event-marker input time series in a trial-based setting. Section 3 connects the first-
order (linear) terms of the event-related Volterra model to Hansen decomposition theory (with
singularity analysis). Section 4 extends the Volterra-Hansen theory to second-order models; and the
general result is presented in Section 5. It is hoped that these theoretical developments may provide
cognitive neurophysiologists with a fruitful framework for novel experimental designs and analyses.

2. Trial-based event-related Volterra (ERV) model in the time domain

An ERV model for L distinct events occurring on any given trial J has the form

f h'(1)(71 )in1 (t -7 )d71 +
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where () is a measured physiological time series; £;() is random error; hl.<11)() is a first-order
kernel (i.e., impulse response function); hi(1i22)(’) is a second-order kernel; and so on.
X i (t) =C 1, 5(t —t 4 ) is a time series marking the occurrence of event i1 at time [ i where C iy is
an optional response variability coefficient (1 by default). The integrals readily drop out of Eq. (1):
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Here, the order>1 kernels have been rewritten (underbars) in oblique form [Sclabassi et al., 1988b,
figure 2, p. 21] [Shi and Hecox, 1991, figure 2, p. 838] to reveal that each event-related transient

(indexed by 1, ) is essentially the first-order kernel modified by higher-order kernels sharing a common

time base and parameterized by inter-event intervals (IEls) with respect to the primary event. Thus,
each event-related transient is modulated within the temporal context of other events on the same trial.
The objective of ERV modeling is to estimate the kernels given multi-trial event-related data.

3. Hansen decomposition

Hansen decomposition [Hansen, 1983] may be recast in the context of Eq. (2) as solving first-order
trial-based ERV models in the frequency domain. The first-order time-domain ERV model
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may be expressed in the frequency domain as
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where
i) ey — —2rift;
q (f) = Cji1 exp T ()
and
H(f)=a"(f). (6)

Y;(). E;(), and HI.(11)() are discrete Fourier transforms (DFTs) of y,(), &(), and h,.(11)(),

respectively; and N is the number of time samples per epoch (time interval) associated with a trial.
G"")() incorporates both the time shift ¢ ji, of event i, ontrial j, which is known experimental data,
and the single trial amplitude CE, which is 1 to an initial approximation. (Hansen did not consider
response variability coefficients; they may be estimated, iteratively, from the single trial epochs).
Thus, the first-order kernels h,.(j)()—i.e., the primary event-related transient waveforms—are obtained
by solving for the unknown complex scalars @ (f) to obtain H,.(j)(f) , followed by inverse DFT.

Hansen decomposition has the advantages of computational separability and over-determined
linearity of the frequency-domain solution, i.e., the method solves for only L (number of events per
trial) unknown complex numbers independently for each frequency f given J (number of trials)

linear equations (typically, J >> L ). Whereas Hansen and others solved via normal equations, the
solution via complex singular value decomposition (SVD) [Press et al., 1988] is:
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where W(f) is a diagonal matrix of non-negative real singular values, and W(f)" is obtained by

Q(f) =

(N

zeroing singular values that are close to zero, but otherwise forming their reciprocals.
It is important to note that J > L by itself does not guarantee a unique Hansen decomposition.
On the contrary, Q(f) is identically singular when f =0, L >1,and ¢ i = 1 (then each element of

Q(0) is 1), and can be singular for f >0 if the experiment has IEIs which are inadequately

randomized across trials, or too-long epochs per trial (so that the smallest nonzero frequency
approaches zero). Thus, although the normal equations solution is equivalent to the SVD solution
(with no singularities), the latter permits (i) assessment of adequate IEI randomization before running
an experiment, and (ii) a possible means for handling singularities after the fact.

If the error process spectral density ‘E (f )‘ is available, it may be used to whiten Y(f) and Q(f)

by simple division, in which case the whitened Y (f) and Q(f) may be substituted in Eq. (7). Unless

single-trial estimates of the error process are available, the whitened and unwhitened solutions are
algebraically equivalent—although even here whitening can influence the treatment of singularities.

4. Second-order ERV models in the frequency domain

This section extends the first-order frequency-domain ERV solution (Hansen decomposition) to
second-order ERV models, for which event-related transients are modulated by IEIs:
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Equation (8) may be expressed in the frequency domain as:
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Here, d,i:;iz)(O'm) is one of DI.1I.2 a priori basis functions (indexed by K,,) in the parameter o, ,
which represents the interval from modulatory event l'2 to primary event l'1. In other words, the
second-order kernel that represents i2 -modulation of the i1 -related transient is expanded, in the

frequency domain, by solving for the complex coefficients a'"?)(f) given the complex basis
functions. The latter, for example, may be complex sinusoids with the fundamental cycle spanning the
range of inter-event intervals which may be found across trials in the experimental data.

In this form, it becomes clear that Egs. (9), (10), and (11) extend Egs. (4), (5), and (6) by adding
new Q and @ terms, so that the columns of Q(f) and the rows of a(f) in Eq. (7) are extended
accordingly. Thus, the general solution form of Eq. (7) is preserved for second-order ERV models.

Note that the number of unknown & coefficients per frequency increases from L (first order) to
L+ L(L—1)D (for a common number D of basis functions). Thus, experimental requirements to
achieve non-singular Q(f) (e.g., minimum number of trials, adequate IEI randomization) are more
stringent for second-order models.

5. General-order ERV models in the frequency domain (with kernel selection)

By further extension, a Hansen-like solution for general ERV models (order M) per Eq. (2)
follows from Egs. (12), (13), and(14) which parallel Eqs (9) (10), and (11):
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Here, selection booleans [3, have been introduced so that a “fully populated” ERV model of order M
may be reduced by special considerations (pertaining to the experimental situation) for including
(B, =1) or excluding (S, = 0) particular kernels. For example, the sequence of events in a trial
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may suggest a second-order kernel for i1 -modulation of the i2 -related transient, but not vice versa.

Reducing the full model facilitates tractability by decreasing the number of unknown @ coefficients.
Thus, the general form of the solution shown in Eq. (7)—along with its associated singularity
analysis—is preserved for ERV models of any order and with arbitrary selection of available kernels.

6. Discussion

Volterra and Hansen theories have been unified with the aim of separating temporally overlapping
event-related transients (embedded in physiological time series, such as EEG or MEQG) that, in turn, can
be modulated by other temporally proximate events (occurring within cognitive-behavioral
experiments designed with multiple events per trial). Thus, the theoretical framework in principle can
handle both linear separation of event-related transients (ERTs) along with their nonlinear contextual
integration via inter-event modulations (IEMs). First-order kernels are transient waveforms which
resemble ordinary average ERPs or ERFs—however, with the difference that the former are estimated
from (and interpreted within) an explicit ERV model. Second- and higher-order kernels are IEI-
parameterized waveforms having precisely the same time base as the first-order kernels which they
modify. Thus, modulation of an ERT on a particular trial depends on that trial’s IEIs relative to the
target/primary event.

Application of the theory depends critically on sufficiently-randomized IEI distributions.
Consequently, not all multi-event trial-based experimental designs are suitable for Volterra-Hansen

analysis. Importantly, the Q(f ) matrix series of Eq. (7) depends to a first approximation (that is, with

default response variability coefficients) on experimental event data only. Thus, singularity analysis
via SVD may be carried out in advance of physiological data acquisition to insure that the experimental
design is adequate to support estimation of specific ERV models.

As with ordinary averaging, ERV kernels are estimated separately for each data channel. Also,
higher-order kernels have the same physical units (e.g., microvolts or femtotesla) as first-order
transients, because the former are correction terms for the latter. Consequently, all source estimation
methods which apply to multi-channel ERPs or ERFs may also be applied to multi-channel IEMs. This
could be significant if an investigator wishes to estimate brain locations that process inter-event
interactions (e.g., multi-sensory integration paradigms) rather than primary sensory or motor processes.

A limitation of the current theory is its assumption of homogeneous and independent realizations
of ERT-generation processes across trials. These issues may call for hierarchical modeling.

The principal results of this paper were derived in an internal report [Pflieger, 2010]. EEG
applications (using reaction time paradigms; paired-click auditory gating paradigms with randomized
inter-click intervals; and Go-NoGo paradigms) are underway, to be reported separately.
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