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Abstract. Cognitive neuroscientists often conduct trial-based experiments, having two or more events 
(e.g., sensory stimulus and motor response) per trial, conjointly with neurophysiological time series 
acquisition and analysis of event-related transient brain activity.  Hansen decomposition [Hansen, 
1983] is a frequency-domain technique for separating multiple overlapping event-related transients.  
However, the theory assumes that the brain is a linear system and, consequently, that event clusters 
within a trial are not associated with interactive (e.g., sensorimotor integrative) brain processes.  The 
Volterra theory of nonlinear systems includes linear systems as a first approximation, adding higher-
order correction terms to accommodate interactions.  This paper presents an event-related 
specialization of Volterra models, and formulates how the kernels which characterize such models may 
be estimated from multi-trial data via Hansen’s computationally efficient approach.  Volterra-Hansen 
estimation of primary event-related transients and secondary inter-event modulations makes demands 
on experimental design, which may be evaluated prior to physiological acquisition.  Methods for 
analysis and source estimation of event-related transients may also be applied to inter-event 
modulations, thereby facilitating the study and localization of integrative processes in the brain. 
Keywords: Trial-Based Cognitive Paradigm; ERP; ERF; Overlapping Waveform Separation; Nonlinear System Identification

1. Introduction 
Experimental paradigms designed with multi-event trials (e.g., cue-stimulus-response) are 

commonly used in cognitive neuroscience in conjunction with brain physiology measures such as 
event-related electric potentials (ERPs) and magnetic fields (ERFs).  Simple averaging of physiological 
data epochs across trials after alignment to selected events has been the primary technique for 
estimating transient waveforms that reflect brain activity which is coupled in phase to experimental 
events.  However, event-related transients are likely to overlap in time within each trial (e.g., a cue-
related transient may overlap with a stimulus-related transient which may overlap with a response-
related transient).  In addition, the brain naturally relates different events within a trial so that, in some 
sense, the events (or their representations) interact in the brain.  For example, the brain mediates a 
behavioral response to a sensory stimulus in the context of an informative cue.  The cognitive 
neuroscientist’s main interest may be precisely with how the brain handles such inter-event 
relationships.  Yet, if the brain were simply a linear system—in which case cue-related, stimulus-
related, and response-related transients could be cleanly disentangled—then purely separable event-
related transients would be independent, i.e., non-interacting, contrary to fact and actual scientific 
interest.  Therefore, a combined linear-nonlinear approach is called for, in order to isolate event-related 
transients while also facilitating the study of how they are modulated in the context of other events. 

Hansen [1983] proposed a linear theory of event-related transients, and devised an associated 
frequency domain technique for extracting underlying waveforms which overlap in multi-trial 
experimental data.  Essentially, Hansen decomposition applies the discrete Fourier transform (DFT) in 
order to convert a system of waveform convolution equations to a series of complex scalar linear 
equations.  These are solved independently at each frequency bin for the Fourier representation of the 
underlying event-related transients, which finally are reconstructed in the time domain via the inverse 
DFT.  Hansen applied the technique to the problem of separating stimulus-related and response-related 
waveforms in EEG data acquired with a reaction-time task.  McGill and Dorfman [1984] independently 
devised the method, which also has been studied by Pflieger [1991], Zhang [1998], and (more recently) 
Yin et al. [2009].  The related but distinct Adjar technique [Woldorff, 1993] also is based on a linear 
theory of transients, but operates iteratively in the time domain to resolve adjacent responses in a 
stream of events which are not necessarily clustered as multi-event trials. 

Volterra theory [Volterra, 1930] is a series approximation approach that can extend linear systems 
(first-order terms) to nonlinear systems by adding higher-order terms [Schetzen, 1980].  It has been 



applied to evoked potential and other neurophysiological data [Sclabassi et al., 1988a] [Shi and Hecox, 
1991], to fMRI data [Friston et al., 1998], and as an approach for functional multimodal integration 
[Pflieger & Greenblatt, 2000], but has received little attention among cognitive ERP/ERF researchers. 

This paper presents a unified Volterra-Hansen theory with the dual aims of (i) separating event-
related transients which cluster together on single trials, while also (ii) quantifying inter-event 
modulations, i.e., the manner in which an event-related transient may be modified in the context of 
other events which co-occur on the same experimental trial.  Section 2 presents a specialization of 
Volterra theory for event-marker input time series in a trial-based setting.  Section 3 connects the first-
order (linear) terms of the event-related Volterra model to Hansen decomposition theory (with 
singularity analysis).  Section 4 extends the Volterra-Hansen theory to second-order models; and the 
general result is presented in Section 5.  It is hoped that these theoretical developments may provide 
cognitive neurophysiologists with a fruitful framework for novel experimental designs and analyses. 

2. Trial-based event-related Volterra (ERV) model in the time domain 
An ERV model for L  distinct events occurring on any given trial j  has the form 

        
1 1

1

1 2 1 2
2

(1)
1 1 1

1 (2)
1 2 1 2 1 2

1

( ) ( )

( ) ( )
( , ) ( ) ( )

i ji
L

j j Li
i i ji ji

i

h x t d

y t t
h x t x t d d

τ τ τ
ε

τ τ τ τ τ τ

∞

−∞

∞ ∞
=

= −∞ −∞

⎛ ⎞

− +⎜ ⎟

⎜ ⎟≈ +
⎜ ⎟

⎛ ⎞
⎜ ⎟− − +⎜ ⎟
⎜ ⎟

⎝ ⎠⎝ ⎠

∫

∑

∑ ∫ ∫ �

 (1) 

where ()jy  is a measured physiological time series; ()jε  is random error; 
1

(1)()ih  is a first-order 

kernel (i.e., impulse response function); 
1 2

(2)(, )i ih  is a second-order kernel; and so on.  

1 1 1
( ) ( )ji ji jix t c t tδ= −  is a time series marking the occurrence of event 1i  at time 

1ji
t , where 

1ji
c  is 

an optional response variability coefficient (1 by default).  The integrals readily drop out of Eq. (1): 
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Here, the order>1 kernels have been rewritten (underbars) in oblique form [Sclabassi et al., 1988b, 
figure 2, p. 21] [Shi and Hecox, 1991, figure 2, p. 838] to reveal that each event-related transient 
(indexed by 1i ) is essentially the first-order kernel modified by higher-order kernels sharing a common 
time base and parameterized by inter-event intervals (IEIs) with respect to the primary event.  Thus, 
each event-related transient is modulated within the temporal context of other events on the same trial. 

The objective of ERV modeling is to estimate the kernels given multi-trial event-related data. 

3. Hansen decomposition 
Hansen decomposition [Hansen, 1983] may be recast in the context of Eq. (2) as solving first-order 

trial-based ERV models in the frequency domain.  The first-order time-domain ERV model 
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may be expressed in the frequency domain as 
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and 
1

1

( )(1)( ) ( )i
iH f a f=  .                                                             (6) 

()jY , ()jΕ , and 
1

(1)()iH  are discrete Fourier transforms (DFTs) of ()jy , ()jε , and 
1

(1)()ih , 

respectively; and N  is the number of time samples per epoch (time interval) associated with a trial.  
1( ) ()i jq  incorporates both the time shift 

1ji
t  of event 1i  on trial j , which is known experimental data, 

and the single trial amplitude 
1

1
jic
− , which is 1 to an initial approximation.  (Hansen did not consider 

response variability coefficients; they may be estimated, iteratively, from the single trial epochs).  
Thus, the first-order kernels 

1

(1)()ih —i.e., the primary event-related transient waveforms—are obtained 

by solving for the unknown complex scalars 1( )( )ia f  to obtain 
1

(1)( )iH f , followed by inverse DFT. 

Hansen decomposition has the advantages of computational separability and over-determined 
linearity of the frequency-domain solution, i.e., the method solves for only L  (number of events per 
trial) unknown complex numbers independently for each frequency f  given J  (number of trials) 
linear equations (typically, J L� ).  Whereas Hansen and others solved via normal equations, the 
solution via complex singular value decomposition (SVD) [Press et al., 1988] is: 
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where ( )fW  is a diagonal matrix of non-negative real singular values, and ( )f +W  is obtained by 
zeroing singular values that are close to zero, but otherwise forming their reciprocals. 

It is important to note that J L�  by itself does not guarantee a unique Hansen decomposition.  
On the contrary, ( )fQ  is identically singular when 0f = , 1L > , and 

1
1jic =  (then each element of 

(0)Q  is 1), and can be singular for 0f >  if the experiment has IEIs which are inadequately 
randomized across trials, or too-long epochs per trial (so that the smallest nonzero frequency 
approaches zero).  Thus, although the normal equations solution is equivalent to the SVD solution 
(with no singularities), the latter permits (i) assessment of adequate IEI randomization before running 
an experiment, and (ii) a possible means for handling singularities after the fact. 

If the error process spectral density ( )j fΕ  is available, it may be used to whiten ( )fY  and ( )fQ

by simple division, in which case the whitened ( )fY  and ( )fQ  may be substituted in Eq. (7).  Unless 
single-trial estimates of the error process are available, the whitened and unwhitened solutions are 
algebraically equivalent—although even here whitening can influence the treatment of singularities. 

4. Second-order ERV models in the frequency domain 
This section extends the first-order frequency-domain ERV solution (Hansen decomposition) to 

second-order ERV models, for which event-related transients are modulated by IEIs: 
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Equation (8) may be expressed in the frequency domain as: 
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Here, 1 2

12
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12( )i i

kd σ  is one of 
1 2i i

D  a priori basis functions (indexed by 12k ) in the parameter 12σ , 

which represents the interval from modulatory event 2i  to primary event 1i .  In other words, the 

second-order kernel that represents 2i -modulation of the 1i -related transient is expanded, in the 

frequency domain, by solving for the complex coefficients 1 2( ) ( )i ia f•  given the complex basis 
functions.  The latter, for example, may be complex sinusoids with the fundamental cycle spanning the 
range of inter-event intervals which may be found across trials in the experimental data. 

In this form, it becomes clear that Eqs. (9), (10), and (11) extend Eqs. (4), (5), and (6) by adding 
new q  and a  terms, so that the columns of ( )fQ  and the rows of ( )fa  in Eq. (7) are extended 
accordingly.  Thus, the general solution form of Eq. (7) is preserved for second-order ERV models. 

Note that the number of unknown a  coefficients per frequency increases from L  (first order) to 
( 1)L L L D+ −  (for a common number D  of basis functions).  Thus, experimental requirements to 

achieve non-singular ( )fQ  (e.g., minimum number of trials, adequate IEI randomization) are more 
stringent for second-order models. 

5. General-order ERV models in the frequency domain (with kernel selection) 
By further extension, a Hansen-like solution for general ERV models (order M ) per Eq. (2) 

follows from Eqs. (12), (13), and (14), which parallel Eqs. (9), (10), and (11): 
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Here, selection booleans β•  have been introduced so that a “fully populated” ERV model of order M
may be reduced by special considerations (pertaining to the experimental situation) for including 
( 1)β• =  or excluding ( 0)β• =  particular kernels.  For example, the sequence of events in a trial 



may suggest a second-order kernel for 1i -modulation of the 2i -related transient, but not vice versa.  
Reducing the full model facilitates tractability by decreasing the number of unknown a  coefficients. 

Thus, the general form of the solution shown in Eq. (7)—along with its associated singularity 
analysis—is preserved for ERV models of any order and with arbitrary selection of available kernels. 

6. Discussion 
Volterra and Hansen theories have been unified with the aim of separating temporally overlapping 

event-related transients (embedded in physiological time series, such as EEG or MEG) that, in turn, can 
be modulated by other temporally proximate events (occurring within cognitive-behavioral 
experiments designed with multiple events per trial).  Thus, the theoretical framework in principle can 
handle both linear separation of event-related transients (ERTs) along with their nonlinear contextual 
integration via inter-event modulations (IEMs).  First-order kernels are transient waveforms which 
resemble ordinary average ERPs or ERFs—however, with the difference that the former are estimated 
from (and interpreted within) an explicit ERV model.  Second- and higher-order kernels are IEI-
parameterized waveforms having precisely the same time base as the first-order kernels which they 
modify.  Thus, modulation of an ERT on a particular trial depends on that trial’s IEIs relative to the 
target/primary event. 

Application of the theory depends critically on sufficiently-randomized IEI distributions.  
Consequently, not all multi-event trial-based experimental designs are suitable for Volterra-Hansen 
analysis.  Importantly, the ( )fQ  matrix series of Eq. (7) depends to a first approximation (that is, with 
default response variability coefficients) on experimental event data only.  Thus, singularity analysis 
via SVD may be carried out in advance of physiological data acquisition to insure that the experimental 
design is adequate to support estimation of specific ERV models. 

As with ordinary averaging, ERV kernels are estimated separately for each data channel.  Also, 
higher-order kernels have the same physical units (e.g., microvolts or femtotesla) as first-order 
transients, because the former are correction terms for the latter.  Consequently, all source estimation 
methods which apply to multi-channel ERPs or ERFs may also be applied to multi-channel IEMs.  This 
could be significant if an investigator wishes to estimate brain locations that process inter-event 
interactions (e.g., multi-sensory integration paradigms) rather than primary sensory or motor processes. 

A limitation of the current theory is its assumption of homogeneous and independent realizations 
of ERT-generation processes across trials.  These issues may call for hierarchical modeling. 

The principal results of this paper were derived in an internal report [Pflieger, 2010].  EEG 
applications (using reaction time paradigms; paired-click auditory gating paradigms with randomized 
inter-click intervals; and Go-NoGo paradigms) are underway, to be reported separately. 
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