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Abstract. The methods of signal analysis in time-frequency space are described. The method of adaptive 
approximations by matching pursuit decomposes the signal into waveforms characterized by: amplitude, 
frequency, time occurrence and time span. High resolution time-frequency distributions can be constructed and 
at the same time parametric description of the signal structures allows for extraction from the data the 
phenomena of  concrete physiological meaning e.g.: sleep spindles, slow waves, epileptic spikes, evoked 
potentials, etc. These data structures can be used as the input values for inverse solutions. The Directed Transfer 
Function allows for determination of causal relations between channels of multivariate process.  The fully 
multivariate treatment of the signals (contrary to bivariate approach) allows for the determination of transmission 
patterns of the brain activity. Short-time Directed Transfer Function makes possible to determine the propagation 
of brain signals as a function of time and frequency. The applications of both methods to the evaluation of EEG 
connected with motor and cognitive functions are described. 
 
Keywords: multichannel autoregressive model, Directed Transfer Function, Granger causality, information transfer in brain, adaptive 
approximations, matching pursuit, time-frequency distributions, voluntary movements, Continuous Attention Test. 
 

 
1.Introduction. 
 

Mechanisms governing transitions between neural pools during information processing are reflected in 
the oscillatory activity of brain, which can be recorded as Local Field Potentials (LFP), Electrocorticograms 
(ECoG) or electroencephalograms (EEG). In the last years brain imaging techniques, especially such as PET and 
fMRI provided the information on the localization of the active sites in brain under different experimental 
conditions. These techniques are characterized by a high spatial resolution, however they have two limitations. 
First is connected with low (in comparison to EEG) time resolution, second concerns the lack of spectral 
information. In the information processing by brain, different rhythms have their specific role and quite often 
during certain task the decrease of one rhythm is connected with the increase of activity in another frequency 
band. As an example may serve the motor action when the decrease in the alpha and beta band is accompanied 
by the increase of gamma activity [Pfurtscheller and Lopez da Silva, 1999; Ginter et al., 2005].  

A problem that can be hardly solved by the imaging techniques is the estimate of the dynamic 
communication between brain structures in a short time scale. The solution may be provided by means of EEG 
analysis under the condition that proper estimators will be used. 

In this paper the methods will be described which allow for the time-frequency analysis of EEG signals. 
The method that provides highest time-frequency resolution among currently available methods is matching 
pursuit (MP) approach based on adaptive approximations. It describes signal structures in terms of parameters of 
a clear meaning: frequency, amplitude, time occurrence and time span. This kind of parameterization allows for 
solving the inverse problem for specific phenomenon manifested in EEG as particular signal structure e.g. sleep 
spindle or event related potential, since the algorithm makes possible to extract given component from the 
overall background signal. 

Adaptive approximations by Matching Pursuit method was introduced by [Mallat and Zhang, 1993]. 
The first application to the physiological signals concerned EEG sleep: [Blinowska and Durka, 1994]. The 
original algorithm was improved by the introduction of stochastic dictionaries [Durka et al. 2001a] removing the 
bias due to the dyadic structure. MP has been used for sleep studies [Zygierewicz et al.,1999], high resolution 
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study of Event Related Desynchronisation/Synchronisation (ERD/ERS) phenomena [Durka et al., 2001b] and in 
its multichannel form to the solution of inverse problem [ Durka et al., 2005a].  

 The method that is based on the phase relations between signals and describes their multivariate 
structure is Directed Transfer Function (DTF) introduced by [Kaminski and Blinowska, 1991]. By means of DTF 
the frequency dependent pattern of transmissions between brain structures may be found. With the aim of 
distinguishing direct from indirect flows, an aspect important in case of implanted electrodes, Direct Directed 
Transfer Function (dDTF) was devised [Korzeniewska et al., 2003]. A version of DTF based on ensemble 
averaging –Short time Directed Transfer Function (SDTF) allows for description of the EEG propagation as a 
function of frequency and time providing a dynamic pattern of the activity transmission. 

Below the basic formalism of MP and DTF methods will be described and some applications will be 
presented. Comparison with other methods will be made, discussion concerning advantages and drawbacks of 
the methods will follow. 
 
2. Matching Pursuit Method. 
 

The MP method relies on adaptive decomposition of the signal into waveforms from a large and redundant 
dictionary of functions. A dictionary of basic waveforms can be generated e.g. by scaling, translating and, unlike 
in wavelet transform (WT), modulating window function g(t): 
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s>0 - scale, ξ - frequency modulation, u - translation.   

Index I = (ξ, s, u) describes the set of parameters. The window function g(t) is usually even and its energy in  
time domain is mostly concentrated around u with variance proportional to s. In frequency domain, the energy is 
mostly concentrated around ξ with a spread proportional to 1/s. The minimum of time-frequency variance is 
obtained when g(t) is Gaussian. The dictionaries of windowed Fourier transform and wavelet transform can be 
derived as subsets of this dictionary, defined by certain restrictions on the choice of parameters. In case of the 
windowed Fourier transform, the scale s is constant - equal to the window length - and the parameters ξ and u are 
uniformly sampled. In the case of WT the frequency modulation is limited by the restriction on the frequency 
parameter ξ = ξ0/s, ξ0 = const. 

Finding an optimal approximation of signal by functions from such a large family is a NP-hard problem 
(computationally intractable). Therefore, a suboptimal iterative procedure is applied. In the first step of the 
iterative procedure we choose the vector  which gives the largest product with the signal f(t):  gI0
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Then the residual vector R1 obtained after approximating f in the direction is decomposed in a similar way. 
The iterative procedure is repeated on the following obtained residues:  

gI0
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In this way, the signal f is decomposed into a sum of time-frequency waveforms, chosen to match optimally the 
signal’s residues: 
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The point at which we should stop the iterations, or, equivalently, the number of waveforms in 
expansion (4), can be chosen individually for each signal based upon mathematical criteria or set arbitrary e.g. as 
a percentage of energy accounted for. It was proven (Mallat and Zhang, 1993) that the procedure converges to f. 
Energy of representation is conserved: 
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The highest time-frequency resolution is obtained for functions gI from Gabor family. In our studies, we used 
Gabor functions, sinusoids and delta functions. An example of the iterative decomposition procedure is shown in 
Fig.1.  
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Fig. 1. Decomposition of EEG signal (A) into basic waveforms from Gabor dictionary. At the right (B) the 
components of the signal (in order decreasing with energy) found by the MP algorithm. At the bottom 
left (C) the signal reconstructed from the waveforms shown on the right of the picture. 
 

 

One of the problems encountered in the procedure of the adaptive approximations is sampling of the 
time-frequency space in respect of fitting atom’s positions. In the original algorithm (Mallat and Zhang, 1993) 
the dyadic sampling was applied, therefore some positions of atoms were privileged. We observed this effect, for 
averaged distributions of atom’s parameters and on time-frequency plots. In order to avoid the effects of 
dictionary structure a new algorithm based on stochastic dictionaries was introduced (Durka et al. 2001a). 

We can visualize the results of MP decomposition in time-frequency plane by adding the Wigner 
distributions of each of the selected waveforms.  

Calculating the Wigner distribution from the whole decomposition, we get: 
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where the double sum in eq. 6, containing cross distributions of different waveforms, corresponds to the cross 
terms generally present in Wigner distribution. These terms one usually tries to remove in order to obtain a clear 
picture of the energy distribution in the time-frequency plane. Removing these terms from eq. 6 is 
straightforward - we keep only the first sum. The energy density in time-frequency plane of signal’s 
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representation obtained by means of MP is given by the expression Ef(t,ω): 
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The distribution conserves the signal energy in the time-frequency space 
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This justifies the interpretation of Ef(t,ω) as the energy density of signal  f(t) in the time-frequency plane.  
 

3. Application of MP method. 
 

The comparisons of time-frequency distributions obtained by different methods of signal analysis: 
windowed Fourier Transform, wavelets, Choi-Williams distribution and MP can be found in: [Blinowska et al., 
2004a and Jedrzejczak et al., 2004], where the superior time-frequency resolution of MP was demonstrated.  A 
good illustration of the performance of MP is the study of  sleep EEG, since in this case EEG trace is composed 
of signal structures with different  time-frequency characteristics - transients as well as periodic components. 
The time-frequency distribution of EEG sleep stage 2 is shown in Fig. 2. Characteristic structures of the EEG 
signal: K complexes in the low frequency band, sleep spindles in the frequency range 11÷15 Hz are easily 
distinguished in the background of rhythmic activity. 

 
 

 
Fig. 2.   Energy density in time-frequency coordinates (Wigner maps) obtained from MP decomposition of EEG, 

sleep stage2. Above EEG signal is shown. 
 
 
 The parametric description of the signal is very convenient for the further statistical analysis and makes 

possible construction of different kinds of distributions. By setting appropriate constraints on waveforms 
extracted from a signal, we can choose desired structures and inspect their time-frequency characteristics 
[Zygierewicz et al., 1999; Durka et al., 2005a]. 

The example of the application of MP algorithm to the high-resolution study of EEG activity during 
finger movement and its imagination is shown in Fig. 3. Several components in alpha and beta bands can be 
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distinguished. One can observe high similarity of time-frequency maps for both tasks, however in case of 
imagination the beta activity is more pronounced, as might have been expected. The methods for estimation of 
statistical significance of time-frequency-energy density distributions (obtained by MP or spectrograms) of 
ERD/ERS (event related desynchronisation/synchronisation) including choice of resampling statistics and 
correction for multiplicity (false discovery rate) was elaborated in [Durka et al., 2004]. 

 

 
 

Fig. 3. Energy density distributions in μ (left) and β (right) EEG bands (electrode C1) for the right finger 
movement (bottom) and its imagination (top). Horizontal scale - time in seconds, vertical scale- 
frequency in Hz. The black mark indicates the time epoch during which the cue (arrow) indicating left 
or right finger movement /imagination was displayed. 
 
High resolution of MP allowed for elucidation of the role of different closely spaced rhythms in the 

voluntary movement experiments Durka et al. 2001b, Ginter Jr. et al. 2001. Other applications of MP algorithm 
concerned: event related responses to weak vibrational stimuli [Zygierewicz et al. 1998], investigation of the 
evolution of epileptic seizure [Franaszczuk et al. 1998], analysis of otoelectric emissions [Jedrzejczak et al. 
2004]. In the application to the epileptic EEG matching pursuit allowed for analysis of entire seizures without 
requiring segmentation or restrictions to stationary epochs. This made possible clear distinction of the periods of 
different dynamics during seizure development. 

MP method offers a new approach for source localization of single structures with definite spatial-time-
frequency properties. Inverse problem solutions have been mostly applied to instantaneous data (i.e. time points 
of multichannel EEG trace). An alternative approach, also used as an input to inverse solutions - spectral 
integrals, contains activity of different origins. MP allows for extraction of particular structure from the 
background of other activities. As a first step, EEG recordings are decomposed into sums of waveforms by the 
Multichannel Maching Pursuit (MMP) algorithm, which is a generalization of the matching pursuit for the 
multidimensional data.  The second step consists of using topographic signatures of waveforms of interest as 
input for obtaining 3D localization of cerebral sources.  

The method was applied to the localization of the sleep spindles. Single sleep spindles features (MP 
parameters) extracted by MMP from multichannel EEG data served as an input to the LORETA (Low 
Resolution Electromagnetic Tomography). The results of the study showed that low frequency spindles come 
from frontal and high frequency spindles from more posterior areas of brain. In Fig. 4 the localizations obtained 
for two spindles of different frequencies are shown. The localizations obtained for single structures were 
coherent with the ones obtained by averaging the results coming from 20 overnight EEG recordings [Durka et al., 
2005b]. The above study showed that application of selective and high-resolution estimates of EEG activity 
significantly improves the robustness of inverse solutions and allows for a repeatable localization of single 
structures, based upon their time-frequency signatures. Another application of the above method concerned 
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localization of the epileptic foci [Matysiak et al., 2005]. The MMP is by no means limited to particular method 
of solving inverse problem; any method of the solution may be used together with multichannel matching pursuit. 
 
 

 
 
Fig.4. Inverse problem solution for sleep spindles by means of MP and LORETA. Upper left – EEG signal, 

upper right sleep spindles extracted from EEG by means of MP. Bottom left - localization of  source 
obtained for low frequency spindle; bottom right - localization of source for high frequency spindle. 
(The localization of sources obtained as averages for spindles from 20 overnight EEG recordings 
coincide very well with the results for single spindles). 
 

 

4. Multivariate AR model and Directed Transfer Function. 
The SDTF method is based on a multivariate autoregressive model (MVAR) fitted to the EEG signal. 

For a k-channel signal a vector of k EEG values at every time point t can be represented as X(t)=(X1(t), X2(t), ..., 
Xk(t)). The MVAR model can be expressed as: 

)()()()( tEitXiAtX
p
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where X(t) is the data vector in the time t, E(t) is the vector of white noise values, A(i) are the model coefficients 
and p is the model order. After transforming the model equation to a frequency domain we get: 
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The H( f) matrix is called a transfer matrix of the system. H( f ) is asymmetric and contains information about the 
phase and frequency dependencies between signals. 
Directed Transfer Function (DTF) which describes causal influence of channel j on channel i at frequency f  

[Kaminski and Blinowska, 1991] is defined as: 
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The above equation defines a normalized version of DTF, which takes values from 0 to 1 producing a ratio 
between the inflow from channel j to channel i to all the inflows to channel i.  Value of DTF shows whether the 
signal component of given frequency in channel i is shifted in time in respect to signal component of the same 
frequency in channel j. The estimate shows only the direction, not the value of the delay. However this 
information is unambiguous, contrary to Fourier estimate, which gives phase modulo 2π, so the direction of the 
transmission cannot be determined. 

Sometimes it is easier to abandon the normalization property and use values of elements of transfer 
matrix which are related to causal connection strength. The non-normalized DTF can be defined as: 

 

(12)
|fH| = f ji
2)()(ji

2θ

It has been shown that DTF function defined above may be considered as a multivariate extension of 
Granger causality measure [Kamiński et al., 2001]. In a strict sense it is equivalent to Granger causality in case 
of two channels system, since Granger causality was defined for two channels only [Granger 1969]. In both 
approaches the variance in one channel is explained using past samples from another channel of the set. Namely: 
if a series X2(t) contains information in past terms that helps in the prediction of X1(t) and this information is 
contained in no other series used in the predictor, then X2(t) is said to cause X1(t). The problem of bivariate 
versus multivariate measures of causality will be discussed below. 

Transfer function (and hence DTF) is estimated by means of the coefficients of the model  (eq. 10). 
There are several methods described in the literature to estimate the model coefficients A(i) e.g.: [Marple 1987]. 
As a first step we must calculate the correlation matrix R(t). Its elements are defined as: 
 

 

(13)

where Xi(t) denotes data point in the i-th channel at the time t, Rij(s) are the elements of correlation matrix R(t) 
calculated for time lag t=s, and n is the length of the data record. The correlation matrices calculated for time 
lags s=0,..., p-1are later used to compute A(i) coefficients and the transfer matrix H( f ). The above method of 
calculation of R(t) estimate is based on an assumption of ergodicity. Statistical properties of the model are 
connected with the length of the data record — the longer the record the better the estimate. The stationary signal 
epoch has to be long enough to fulfill that assumption. However, having long stationary epochs in EEG analysis 
is an exception rather than a rule. 
In order to assess dynamical properties of the transmissions another approach may be used, based on ensemble 
averaging. When multiple repetitions of the experiment are available each realization  can be divided into short 
time epochs and correlation matrix may be calculated according to formula [Ding et al. 2000]: 

 

(14)

 
where NT is the number of the realizations, Rij denotes the elements of R(r)(s) — correlation matrix 
calculated for time lag t=s in the realization r, and n is the length of the data window. This approach allows for 
much shorter data windows in the analysis; short enough to treat the data within the chosen window as stationary 
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(the win

. That way, we fulfill the basic assumption that the mean is zero in all the 
realizati

a random pool of trials corresponds to 
mulating of another recording session. By repeating this procedure (repeating a “simulation experiment”) many 

 

n is true for any bivariate 
measure as was pointed out in: [Kus et al. 2004; Blinowska et al, 2004b], where different measures of 
directionality of flows for different simulated patterns of propagation were discussed.  

 

dow cannot be shorter than the model order; the theoretically shortest possible window length is nmin = 
p+1). 

From the correlation matrix given by eq. (12) the MVAR parameters and the transfer matrix can be 
calculated. The data windows can be shifted successively over time to cover the whole length of the investigated 
epoch. The common model order must be chosen for all the windows. We found the Akaike AIC criterion 
[Akaike, 1974] to be most stable in the estimation of the model order. Additionally, several preprocessing steps 
must be performed in order to obtain comparable results for all the data windows. First, the data in every channel 
should be normalized over time by subtracting the temporal mean and dividing by the temporal variance in that 
channel. Next the ensemble mean should be subtracted from every data point. We do this to assure data 
stationarity within each data window

ons. Finally, each data point should be divided by the ensemble variance to get the data normalized over 
trials within the same time window.  

The bootstrap method [Zaubir and Boashash 1998] can be used to evaluate the error of the estimated 
functions. The variance of the function value is obtained by repeated calculation of the results for a randomly 
selected pool of original data trials. Roughly speaking, selecting 
si
times, one can get an estimate of the variance of the chosen function. 

5. Simulation studies and properties of DTF function. 
Granger causality was defined for two channels only, however Granger in his later work emphasized 

that the causal relation can be unequivocally determined only, if there are no influences from the other channels 
of the process [Granger, 1980]. In case of EEG recorded from the set of electrodes all signals are highly related, 
therefore a multivariate approach have to be used. The simple simulation showed in Fig. 5 illustrates this point.  
As the input signal experimental EEG (highpass filtered with cutoff frequency 3 Hz) plus random noise was used.  
The signals in the destination channels were constructed by introducing delays and adding to each delayed 
channel an extra white noise. The simulation scheme corresponds to the common situation of measurement of 
signals in different distances from the source. In case of bivariate Granger causality, the false propagations are 
detected whenever there are phase delays between measurement sites. This observatio

 

Simulations showing difference between bi-variate and multi-variate estimates of directionality based 
on Granger causality. Upper picture – simulation scheme. Middle pictures show Granger causality 
measures; left bivariate, right multivariate. In each small panel the causality measure is shown

 
Fig. 5. 

 as the 
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function of frequency. The direction of causality relations is from the channel marked above each 
e resulting patterns of causality relations (flows). 

 

C emphasizes rather sinks and not the sources, 
therefore it gives less clear picture of the EEG propagation. The above observation concerning DTF versus 
bivariate measures of directionality holds also for short-time version of DTF – SDTF, since both estimates differ 
only in respect of the method of computing MVAR coefficients. 

 

picture to the channel marked at left. Below th
 

6. Application of DTF and SDTF function. 
A comparison of application of bivariate and multivariate measures of directionality to the EEG 

measured from 21 scalp electrodes in an awake state, eyes closed is shown in Fig. 6. The pattern of flows 
obtained by means of DTF is in agreement with the known configuration of sources in the above state. In case of 
the bivariate Granger causality the pattern of propagations is chaotic and for electrode C3 the inversion of 
propagation is observed in comparison to multivariate measure.  In the same figure the transmission pattern 
obtained by means of another multivariate measure – Partial Directed Coherence (PDC) [Baccala and 
Sameshima 2001] is shown.  PDC is a measure of directionality based on MVAR. Similarly to DTF it operates in 
the frequency domain, however due to different normalization  PD

 
Fig. 6. he patterns of EEG transmissions (awake state, eyes closed) obtained by means of different methods: 

ivariate Granger Causality, normalized Directed Transfer Function, Partial Directed Coherence 

of activity in sleep [Kaminski et al., 1997], 
investiga

example of the data 
concerni

T
B
(PDC).  
 
 
 DTF proved to be valuable measure of directionality, which have been confirmed in multiple studies. It 

has been used e.g.: to the localization of seizure foci Franaszczuk et al., 1994], investigation of epileptogenesis 
[Medvedev and Willoughby, 1999], identification of the sources 

tion of propagation of LFP during locomotion [Korzeniewska et al., 1997],  the investigation of EEG-
MEG coupling mechanisms [Mima et al., 2001]. More recently DTF was applied for the estimation of human 
functional connectivity [Astolfi et al., 2005; Babiloni et al., 2005]. 

The investigation of the information processing by brain requires estimation of the dynamical evolution 
of EEG in the short-time scale, therefore time-varying estimate of causality has to be used. The SDTF is a 
measure that fulfils this requirement. The performance of SDTF may be illustrated on the 

ng voluntary finger movement, which were already mentioned in the context of time-frequency analysis 
by MP. MP provides very accurate time-frequency-amplitude distributions; however, SDTF is sensitive also to 
the phase information, which allows estimating the transmissions patterns of EEG activity.  
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In series of experiments: the voluntary finger movement [Ginter et al., 2001], imagination of hand 
movement [Ginter et al., 2005] and finger movement and its imagination for the same subjects [Kus et al., 2006] 
were investigated. Shortly before and during the movement and imagination the decrease of EEG propagation in 
the alpha and beta bands from the areas connected with hand sensory/motor areas and increase of EEG outflow 
from facial and foot sennsory/motor areas were found. The observed EEG flows can be interpreted in connection 
with focal ERD/surround ERS effect observed by [Pfurtscheller and Neuper, 1994] and modeled by [Suffczynski 
et al. 19 . In Fig.7 the matrix of SDTF functions describing time-frequency characteristics of transmissions in 
case of finger movement is shown. One can observe a gap in propagation in alpha and beta bands, especially for 
outflows from the electrodes overlying the primary motor areas (C1, C3). In addition, the rebound in propagation 
after the movement can be observed. 

 

99]

 
Propagation of EEG activity in left hemisphere during right finger movement for one subject. In each 
small panel SDTF as a function of time (horizontal axis) and frequency

Fig. 7. 
 (vertical axis) is presented. The 

ow of activity is from the electrode marked under the column to the electrode marked at the relevant 
w. Red color corresponds to the highest intensity of propagation, blue to the lowest one. (The 

transmissions in gamma band and to some extent in beta band are much weaker, therefore there are 

ring finger movement and its imagination is shown in Fig. 8. (The movies are available at 
http://brain.fuw.edu.pl/~kjbli/DTF_MOV.html). The performance of the movement is connected with the short 
burst of gamma activity from the location overlying hand related primary motor area. The imagination involves 
alternating propagations from primary motor cortex and other motor areas (primarily Supplementary Motor 
Area).  

fl
ro

hardly visible in the color scale determined mainly by alpha activity).  
 
 

 
The sensitivity of the Directed Transfer Function to the concise phase differences allowed for 

establishing the patterns of transmissions in the gamma band even in the presence of noise of random or zero 
phases.  In order to see transmissions for different rhythms, DTF functions were integrated in the corresponding 
frequency bands. One of the forms of presenting the results consisted in movies illustrating the propagation in 
the different frequency bands. An example of the snapshots of the movie representing propagation in the gamma 
band du
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Fig. 8. Propagation of gamma (35-41 Hz) EEG activity during right hand movement (up) and its imagination 

(bottomt): 0.3 s, 1.1s and 1.4 s after the cue appearance. 
 
 
 
 
 
Another application of SDTF concerned the evaluation of the transmission pattern in the experiment 

involving cognitive process [ Kus et al., 2007]. In the experiment, the EEG from 23 electrodes was recorded 
during Continuous Attention test (CAT). The CAT test proposed by [Tiplady, 1992] is a modification of 
continuous performance test-identical pairs. The advantage of CAT is the use of abstractive visual patterns 
(instead of digits or pictures), therefore only visual attention working memory is involved, and the role of 
possible semantic or emotional associations is ruled out. The experiment consisted of presentation of 
consecutively displayed geometrical patterns, some of which were identical as the preceding ones. The person 
have to press the switch after perception of the pattern identical with the preceding one (target condition).  Non-
target condition concerned the situation of perception of the different patterns. The CAT test was performed for a 
group of 16 young healthy males. The data were thoroughly examined in respect of artifacts and the records 
contaminated by artifacts were eliminated. Special attention was paid to muscle artifacts, which might have 
disturbed the activity in the gamma band. After this procedure, the records coming from 10 persons were left.  

The most interesting result was the finding of the differences in the gamma rhythm propagation for 
target and non-target condition. Namely for the target condition the burst of propagation from prefrontal 
electrodes to the central electrodes overlying motor cortex was found. In case of non-target condition, there were 
more bursts of propagation - usually three. The above effect is illustrated in Fig. 9, where the snapshots from the 
movie illustrating the transmission patterns in the gamma band are shown (Movies are available 
at: http://brain.fuw.edu.pl/~rkus/PHD/AVI.). The phenomenon of prolonged transmission from the frontal 
electrodes in case of non-target condition may be explained by the active inhibition, the mechanism suggested by 
e.g.: [Aron et al. 2004].  
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Fig. 9.   Propagation of gamma EEG activity in CAT test for target (upper picture) and non-target (lower 

pictures) conditions. The pictures from left to the right represent propagations in the moments: 0.3s, 0.5 
s, 0.7 s, 0.9 s. The arrows correspond to the significant differences in flows before and after the cue. 
 

 
 
Discussion and Conclusions 
 

Information processing in brain may be instantiated by different distributed cortical networks and a 
plausible mechanism for the coupling between them is the formation of dynamic links mediated by synchrony 
over multiple frequency bands [Varela et al., 2001]. During information processing by brain transitions may 
occur very rapidly in the process of breaking of functional couplings within one set of areas and establishing new 
couplings. The identification of the transitions between the stages of information processing requires the 
methods operating in time-frequency domain. Two such methods MP and SDTF have been presented above. 

MP method is characterized by time-frequency resolution close to the limit defined by the “indefinity” 
principle. It decomposes the signal into the waveforms described by parameters of clear meaning. This makes 
possible to identify the signal structures corresponding to the ones defined over the years of visual analysis. 
These structures may serve as an input values to the inverse problem solutions and identification of the sources 
generating given signal structure – e.g.: sleep spindle, epileptic spike, evoked potential. The MP procedure may 
be also used for de-noising, namely signal structures of time-frequency signatures corresponding to noise 
contribution or artifact can be easily identified and eliminated. 

SDTF have lower time-frequency resolution, however it accounts for the phase information and 
therefore allows for estimation of the transmission between brain structures.  

 Many statistical measures describing coupling in neural system has been devised: linear e.g.: 
correlation, coherence, Granger causality or non-linear e.g.: mutual information, phase synchronization, 
generalized synchronization. Some authors e.g.: [Quiroga,2002] claimed  higher sensitivity of non-linear 
methods, however the above investigation concerned one particular application and the results were not 
unambiguous as admitted by the authors. The systematic study conducted by [Netoff et al., 2006] showed that in 
the presence of noise linear measures of coupling give better results than non-linear ones, even for highly non-
linear systems. The authors conclude:”We have been as guilty as any of our colleagues by being fascinated by 
the theory and methods of nonlinear dynamics”. 

Different measures of directionality have been compared by [Winterhalder et al. 2005] The authors 
report that DTF, as well as PDC estimate correctly the propagation also in case of non-linear processes. Another 
argument against application of nonlinear methods is the fact that all nonlinear estimators are defined for two 
channels only and it has been pointed out without the doubt, that in case of mutivariate processes including more 
than two channels bivariate measures give very misleading results.  
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The limitations of the DTF and SDTF methods are connected with statistical restrictions concerning all 
parametric methods. Namely, the number of parameters has to be several times smaller than the number of data 
points. Number of parameters is proportional to the model order and the square of the number of channels. 
Therefore, the compromise has to be found between the data window length and the number of channels, which 
can be simultaneously fitted to the model. In case of SDTF, high number of the repetitions increases the number 
of the data points and allows for the shorter data window, hence more accurate estimate of time evolution. 

In the comparative study of the [Winterhalder et al., 2005] DTF and PDC were  found as a most reliable 
methods, however it was pointed out that DTF detects not only direct but also indirect flows. This feature may be 
important when estimating transmissions from implanted or subdural electrodes. However in these cases Direct 
Directed Transfer Function [Korzeniewska et al., 2003] which combines DTF with partial coherence, may be 
used. The disadvantage of PDC is the fact that it emphasizes rather sinks not sources, which makes the pattern of 
transitions less clear (Fig. 6). Another unfavorable feature of PDC is its weak dependence on frequency 
(practically “flat” spectrum), which does not permit to distinguish well the role of different rhythms. In the 
recent study short-time direct DTF have been successfully used for estimation of the pattern of direct 
electrocortical flows during the verbal tasks involving words repetition [Korzeniewska et al., 2007]. 

Concluding one can say that due to the truly multivariate treatment of time series by MVAR model the 
causal relations between the EEG signals may be established. The DTF function allows for the determination of 
the correct pattern of transmissions between the brain structures for linear or non-linear processes, including 
indirect and direct flows. The time-varying version of DTF – SDTF describes pattern of the brain activity 
transmissions in time-frequency domain providing the information about the dynamic evolution of the functional 
connectivity. 
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