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Abstract.  This paper reviews the class of instantaneous, 3D, discrete, linear solutions for the EEG
inverse  problem.  Five  different  inverse  methods  are  analyzed  and  compared:  minimum  norm,
weighted minimum norm, Backus and Gilbert, weighted resolution optimization (WROP), and low
resolution  brain  electromagnetic  tomography  (LORETA).  The  inverse  methods  are  compared  by
testing localization errors in the estimation of single and multiple sources. These tests constitute the
minimum necessary condition to be satisfied by any tomography. Of the five inverse solutions tested,
only LORETA demonstrates the ability of correct localization in 3D space. The other four inverse
solutions should not be used if the research aim is to localize the neuronal generators of EEG in a 3D
brain. In this sense, minimum norm, weighted minimum norm, Backus and Gilbert, and WROP can be
likened to x-rays, where depth information is totally lacking. For the sake of reproducible research, all
the material and methods used in this part of the study, consisting of computer programs (source code
and executables) and data, are available upon request to the author. In this way, all the results and
conclusions can be checked, reproduced, and validated by the interested reader.

In the final part of this paper, LORETA in the standard Talairach human brain is
presented. This  technique  allows  the  quantitative  neuroanatomical  localization of
neuronal electric activity. A computer program for LORETA in Talairach space is
available upon request from the author.

1.  Localization  properties  of  instantaneous,  3D,  discrete,
linear solutions for the EEG inverse problem
One of  the primary concerns in electrophysiology is the non-invasive localization of  the
neuronal generators responsible for measured EEG phenomena. Methods for localization are
termed inverse solutions. This review is limited to the class of instantaneous, 3D, discrete,
linear solutions for the EEG inverse problem. In order for an inverse solution of this class to
qualify as a true functional "tomography", it must at least be capable of localizing sources
with a minimum of localization error.  If an inverse solution of this class is incapable of
correct localization, then it has no worth as a tomography. Harsh as this criterion may seem,



it is fair and objective, but most important of all, it is applicable to any proposed method.

The main difficulty impeding the development of a "good" tomography for the generators of
the EEG is  determined by  the physics  nature of  the problem:  the measurements  do  not
contain enough information about the generators. This gives rise to what is known as the
non-uniqueness of the inverse solution. Therefore, from the outset, it can be stated that a
perfect tomography can not exist. Despite this obstacle, the search for better tomographies
goes on, as witnessed by the number of papers being published in this field (see, e.g., [8] for
a recent review).

From a more optimistic point of view, one might expect that whatever little information is
contained in EEG measurements, it should suffice to allow for the existence of at least an
"approximate" tomography. Such a tomography should be capable of recovering the "true"
generators with an acceptable low level of distortion (i.e., of error).

Historically,  the first  tomography published in  this field was the minimum norm inverse
solution of Hämäläinen and Ilmoniemi [6]. The properties of this method for 2D solution
spaces (i.e., sources restricted to a  plane or to a spherical  surface running parallel  to the
measurement surface) were promising. Two-dimensional images of estimated current density
corresponding  to  ideal  point  sources  were  recovered  with  blurring,  but  with  correct
localization of activity maxima. However, this method is incapable of correct localization in
3D solution spaces, as was shown in Pascual-Marqui [10].

The greatest  challenge in the development of EEG source localization tomographies is to
extend the good localization properties of the 2D minimum norm solution to 3D solution
spaces. This was achieved with LORETA (low resolution brain electromagnetic tomography)
[10,11].

All the properties of a tomography, including its quality in terms of localization capability,
can  be  completely  characterized  by  means  of  the  model  resolution  matrix  [9,3].  This
approach  was  used  by  Pascual-Marqui  [10]  to  compare  three  tomographies  (inverse
solutions) in terms of their localization errors.

The  first  part  of  this  paper  contains  a  brief  review  of  the  theory  of  instantaneous,  3D,
discrete, linear solutions for the EEG inverse problem. A methodology is presented for the
fair,  objective,  and  rigorous  comparison  of  EEG-based  tomographies.  The  main  results
presented here correspond to a comparison of five different tomographies taken from the
published literature.

Some important aspects of inverse solutions not included in this study, such as the effect of
noisy measurements and the effect of the reference electrode for EEG measurements, were
considered in detail elsewhere [10]. Other methods of source localization, such as single or
multiple dipole fitting are not the object of this review.

1.1 Material and methods

The forward problem

The "forward" equation, which gives scalp electric potential differences as a function of the
current density (produced by neuronal generators), is:

(1)

In  Eq.  (1),  Φ  is  an  N•1-matrix  comprised  of  measurements  of  scalp  electric  potential
differences. The coordinates of the measurement points are given by the Cartesian position

vectors . The (3M)•1-matrix  is  comprised of the



current densities  at M points within the brain volume, with β = 1...M.
The super-script "T" denotes transpose. The coordinates of the source points within the brain

volume are given by the Cartesian position vectors . The N•(3M)-matrix

K is a transfer matrix. The α th row of the matrix K, with α =1... N, is ,

where  is the lead field. For instance, the electric lead field in an
infinite homogeneous conducting medium is:

(2)

where σ is the conductivity, and sR is the position vector to the reference electrode. In the
simulation studies for the EEG case, the average reference lead field equations corresponding
to a three-concentric spheres head model will be used [1] instead of Eq. (2).

The problem of interest here is the case when the M points (voxels) within the brain volume
span a true 3D volume. This collection of M points is termed the solution space. It must not
be  limited  to,  e.g.,  points  lying  on  a  spherical  surface.  Furthermore,  the points  will  be
assumed to form part of regular cubic grid. In the forward problem, Φ is unknown; whereas

, , K, and J are known. In the inverse problem, only J
is unknown, and there are many more unknowns than equations, i.e., M>N.

It is not the aim of this review to discuss other forms of the forward equation corresponding
to  more  "realistic"  head  models,  which  take  into  account,  e.g.,  head  shape,  anisotropic
conductivities,  etc.  In  any  case,  only  the  matrix  K  above  changes,  and  this  has  no
consequence on the methodological aspects presented in this paper.

Inverse solutions in general

For exact noise-free measurements, any instantaneous, 3D, discrete, linear solution for the
EEG inverse problem can be written as:

(3)

where the (3M)•N-matrix T is some generalized inverse of the transfer matrix K, which must
satisfy:

(4)

where  denotes the N•N average reference operator, defined as:

(5)

where  denotes the N•N identity matrix, and  is an N•1 matrix comprised of ones.

Eq. (4) expresses the fact that the estimated current density (i.e., the inverse solution) given
by Eq. (3) must satisfy the measurements in forward Eq. (1).

The EEG inverse problem is known to have infinite solutions. This means that there exist an



infinite number of different generalized inverse matrices T, all producing current densities 
(Eq. (3)) that satisfy the original measurements Φ (Eq. (1)).

The resolution matrix

The main question now is: what criteria should be used for selecting a particular inverse
solution?, or for preferring one particular inverse solution to all others? The quality of any
given instantaneous, 3D, discrete, linear inverse solution for EEG can be analyzed in terms
of the resolution matrix of Backus and Gilbert [3] (see also [9]). Substituting Eq. (1) in (3)

gives the following relation between "true (J)" and "estimated ( )" current densities:

(6)

where:

(7)

In Eqs. (6) and (7), R is the resolution matrix. In an ideal situation, R is the identity matrix,
and the current density can be estimated exactly. However, for the EEG inverse problem
studied here, the resolution matrices are quite far from being ideal.

There are at least two ways to fully characterize the properties of a given inverse solution,
based on its resolution matrix: by means of the collection of all columns, or of all rows. By
definition,  both  approaches  contain  the  same  amount  of  information  about  the  inverse
solution being studied. In a first approach, the collection of all columns will be considered. A
column of the resolution matrix corresponds to the "estimated" current density for a "true"
point source. This can be seen directly from Eqs. (6) and (7), when the true current density
contains zeros everywhere, except for unity at some given element. The estimated current
density  in this case is known as the "point spread  function." An exhaustive study of  all
possible point spread functions constitutes a complete characterization of an inverse solution,
since trivially, the set of all columns of a matrix defines uniquely the matrix.

The  essence  of  any  tomography  (i.e.,  of  an  instantaneous,  3D,  discrete,  linear  inverse
solution for EEG), is the property of correct localization. Therefore, the only relevant way of
testing  a  linear  tomography is  to  analyze  the estimated  images  produced by  ideal  point
sources. Such tomographic images are precisely the point spread functions. If these images
have incorrectly located peaks, then the method does not deserve the name of "tomography",
due to the lack of any localization capability.

The second approach that characterizes an inverse solution consists of studying the rows of
the resolution matrix, which correspond to the averaging kernels of Backus and Gilbert [3].
An averaging kernel contains information about how the current density estimator at some
given point is influenced by all possible sources. Ideally, an averaging kernel should indicate
high influence of the source at the point of interest, and should indicate low influence of all
other possible sources. It can be rigorously shown, at least for the EEG problem in a piece-
wise homogeneous medium, that the averaging kernels always attain their extreme values on
the borders of the solution space. The proof of this property is based on the following facts:

1. An averaging kernel is a linear combination of lead field functions.

2. At least in the case of the piece-wise homogeneous head model for EEG, the lead fields

are harmonic functions, i.e., .

3. A linear combination of harmonic functions is harmonic.



4.  Harmonic  functions  attain  their  extreme  values  on  the boundaries  of  their  domain  of
definition [2].

This property means that, for a discrete 3D solution space for the EEG inverse problem, it is
not  possible  to  even  obtain  near-ideal  averaging  kernels  at  any  non-boundary  point  of
interest.  In addition, this  property demonstrates the futility of  trying to design  near-ideal
averaging kernels,  since it  is  physically  and mathematically impossible in  a 3D solution
space.

The  non-existence  of  ideal  averaging  kernels  for  non-boundary  points  gives  rise  to  the
fundamental question: are linear inverse solutions doomed to incorrectly localizing deep non-
boundary sources? The results presented below answer this question, showing that only the
LORETA method is capable of localizing these sources, albeit with a certain degree of under-
estimation.

Particular inverse solutions: minimum norm (MN), weighted minimum norm (WMN),
and low resolution brain electromagnetic tomography (LORETA)

There exist at least two possible formulations for deriving some of the linear solutions found
in the literature. Only the average reference EEG problem will be considered here (details for
the MEG inverse problem can be found in  Pascual-Marqui, 1995).  In  one approach,  the
inverse solution corresponds to a constrained solution of the forward equation. In this case,
the following problem must be solved:

(8)

for any given positive definite matrix W of dimension (3M)•(3M). The solution is:

(9)

where  denotes the Moore-Penrose pseudoinverse of .

In another approach, the inverse solution corresponds to the generalized inverse matrix T that
optimizes, in a weighted sense, the resolution matrix. The problem statement here is to solve:

(10)

where  is the (3M)•(3M) identity matrix, and "tr" denotes the trace of a matrix. Note
that the problem in Eq. (10) expresses the minimization of deviation of the resolution matrix
from ideal behavior. The solution to (10) is identically Eq. (9) again.

The minimum norm solution of Hämäläinen and Ilmoniemi [6] corresponds to Eq. (9) with

. The weighted minimum norm solution corresponds to , where ⊗

denotes the Kronecker product,  is  the identity 3•3-matrix, and Ω is a diagonal M•M-
matrix with

, for β = 1...M.



The low resolution brain electromagnetic tomography (LORETA) method [10] corresponds
to:

(11)

where the matrix B implements a discrete spatial Laplacian operator. It should be emphasized
that such a choice for B produces the smoothest possible inverse solution. This is because the
inverse matrix, i.e. , implements a discrete spatial smoothing operator. For a solution
space given by a regular cubic 3D grid, with minimum inter-grid-point distance "d",  the
Laplacian operator used in practice is defined as:

(12)

where  denotes  a  diagonal  matrix  with  diagonal  elements  defined  by  the

elements of the M•1 matrix . Eq. (12) corresponds exactly to the Laplacian operator
implicitly  defined  and  used  in  Pascual-Marqui  [10]  (see  Eq.  (2'')  therein).  The  explicit
definition of the Laplacian is included here (Eq. (12)) for the benefit of readers that may be
interested in implementing LORETA correctly.

Particular inverse solutions: Backus and Gilbert, and weighted resolution optimization
(WROP)

In order to derive these inverse solutions, the forward problem will be rewritten as:

(13)

In  Eq.  (13)  and in what follows,  the subscripts u  and  v  will  take integer  values  (1,2,3)
corresponding to the Cartesian vector field components (x,y,z), respectively. The M•1 matrix

 is now defined as , with similar definitions for  and .

The transfer matrix  is now an N•M matrix, with its α th row (for α = 1...N) defined as

. The matrices  and  are defined similarly. It should be
noted that Eqs. (1) and (13) are identical.

Any linear inverse solution for a field component is of the form:

(14)

where the generalized inverse  is an M•N matrix. The linear inverse solution at the γ th
grid point (γ = 1...M), for the u th field component, is:

(15)



where  denotes the γ th row of .

Substituting (13) in (15) gives:

(16)

(17)

is the averaging kernel. According to Backus and Gilbert [3], the "best" inverse solution must

make the 1•M vector  be as similar as possible to , where δ is the Kronecker

delta, and  denotes the γ th column of the M•M identity matrix. Note that  corresponds
to the discrete representation of the Dirac delta. The Backus and Gilbert problem [3] was
stated as:

(18)

The constraint  in  (18)  is  termed the unimodularity  constraint.  One  choice for  the M•M

diagonal matrix  is:

(19)

The solution to (18) is:

(20)

(21)

Note that Eq. (20) must be calculated for all vector field components (u=1,2,3), and for all
grid points of the solution space γ = 1...M).

It is important to emphasize that the Backus and Gilbert inverse solution based on Eq. (20)
does not satisfy, in general, the measurements in the forward equation.

The weighted resolution optimization (WROP) method of Grave de Peralta Menendez et al.



[5] corresponds to the solution of the following problem:

(22)

where  and  are diagonal M•M matrices defined as:

(23)

(24)

where  is a scalar, and in the particular case considered here,  is also a
scalar.

The solution to (22) is:

(25)

Several comments on the WROP solution are in order:

1. The article by Grave de Peralta Menendez et al. [5] omitted an explicit equation of the
inverse solution for the case of an unknown vector field. The explicit Eq. (25) is included
here for the benefit of readers that may be interested in implementing and testing the WROP
method.

2. The WROP inverse solution does not satisfy, in general, the measurements in the forward
equation.

3. Eq. (25) for the WROP method is incorrect for the MEG inverse problem in a spherically
symmetric head model. A correct equation must take into account that the estimated current
density is exactly a tangential vector field.

4. In the paper by Grave de Peralta Menendez et al. [5] there is no indication about how to
determine  or  select  the  WROP  parameters.  In  view  of  this  situation,  values  of

 are used in the simulation studies performed in this paper.

A comparison of tomographies: to localize or not to localize

The aim of  a  tomography is localization.  For  this  reason,  as  a  first  comparative test  of
tomographic methods for EEG, the main (and only) property of interest is the localization
error. As explained previously, all the information on localization error of a tomography is
given by the set of all columns (all point spread functions) of the resolution matrix (Eq. (7)).

Referring to Eq. (6), consider an ideal "true" point source defined as , where  is
the α th column of the (3M)•(3M) identity matrix. The location in 3D space for the α th voxel



is , where "c" (taking values in the range 1...M) is given by:

(26)

where "int[r]" denotes the "integer part of r". From Eqs. (6) and (7), the corresponding 3D
tomographic image is given by:

(27)

which is the α th column of the resolution matrix (or point spread function). The least of all
properties that a tomography must possess is that images of point spread functions have their
maxima  located  as  correctly  as  possible.  This  property  is  a  necessary  (although  not
sufficient)  condition  for  correct  localization  in general.  The location of  the  point  spread

function maximum is , where:

(28)

and:

(29)

In Eq. (29) the set  consists of all elements of the (3M)•1 matrix given by Eq. (27).

The localization errors for testing a tomography are defined as the set of values:

(30)

for all point spread functions. This test was fully explained and used in a fair and objective
comparative study of several inverse solutions [10].

The head model

Simulation studies in this paper will  be based on implementing the five inverse solutions
previously  described  (MN,  WMN,  LORETA,  Backus  and Gilbert  [3],  and  WROP),  for
average reference EEG measurements corresponding to a three-shell spherical head model
[1] of unit radius sphere. The measurement space consists of 148 electrodes lying on the
scalp  surface.  The  locations  used  here  were  adapted  from  coordinates  provided  by
Lütkenhöner and Mosher (private communication), and are illustrated in Fig. 1. The solution
space consists of 818 grid points (voxels) corresponding to a  3D regular  cubic grid with
minimum inter-point distance d=0.133, confined to a maximum radius of 0.8, with vertical
coordinate values z3-0.4. Fig. 2 illustrates the solution space by means of a  collection of
horizontal slices through the brain.



Figure  1.  3D  representation  of  the  measurement  space  defined  by  148  scalp  EEG
electrodes. A unit radius, three-concentric spheres model is used for the head.

Figure 2. Solution space consisting of 818 voxels (shown as dots) corresponding to a 3D
regular cubic grid with minimum inter-voxel distance d=0.133, confined to a maximum
radius of 0.8, with vertical coordinate values z3  -0.4. Numbers below each horizontal
"brain" slice indicate the Cartesian "z" coordinate. Coordinate origin is at sphere center.

1.2. Results and discussion

Fig. 3 shows localization errors as defined by Eq. (30). In each row, the set of horizontal
tomographic slices through the brain corresponds to a different inverse method. Localization
errors are gray-color coded in the slices, with white indicating zero localization error, and
black indicating 7 or more grid units of localization error. A localization error of 1 grid unit
means that the point spread function had its maximum only 1 voxel away from the correct
position. This result shows that only LORETA has an acceptable low localization error of 1
grid unit in the average. All other methods (Backus and Gilbert [3], MN, WMN, and WROP



) are incapable of localizing non-boundary sources. In this respect,
they are similar to x-rays, and can not be qualified as tomographies, since they offer no depth
information at all.

Furthermore, a detailed quantitative analysis of LORETA localization errors for boundary
sources (i.e., sources on the border of the solution space) showed that out of 819 cases, a
correctly  implemented  LORETA method localizes  383 cases with  zero  localization error
(47%). Another 356 border points (44%) are localized with 1 grid unit of localization error.

Fig.  4  illustrates  the  performance  of  two  tomographies,  LORETA  and  WROP,  when
confronted with the task of localizing two simultaneous point sources, one of which is very
deep. The tomographic slices in Fig. 4 do not show localization errors, as was the case in Fig.
3.  The  tomographic  slices  in  Figs.  4B and  4C  show,  in  a  gray-color  coded  scale,  the
estimated current density, with white indicating zero, and black indicating maximum current
density. The locations, orientations ("mom"), and strengths of two simultaneous test sources
are shown in Fig. 4A. The LORETA slices in Fig. 4B show the estimated current density for
each field component ([X-comp], [Y-comp], [Z-comp]) and for field strength ([Strength]). In
contrast to LORETA which can localize both sources correctly (albeit in a blurred fashion),
the WROP method in Fig. 4C is incapable of correct localization. The incapability of correct
localization of the WROP method, as shown in Fig. 4, is shared identically by the minimum
norm, the weighted minimum norm, and the Backus and Gilbert methods. The capability of
correct localization of the LORETA method, as shown in Fig. 4, was confirmed for many test
sources (single and double), with locations randomly generated.

Figure  3.  Localization  errors  for  all  tomographies.  Horizontal  slices  in  each  row
correspond  to  different  inverse  methods.  Localization  errors  are  gray-color  coded
(white= zero localization error; black= 7 grid units of localization error). A localization
error of 1 grid unit means that the point spread function had its maximum only 1 voxel
away from the correct position. The WROP method implemented here had parameter

values of .



Figure 4. Estimated current density for the LORETA and the WROP methods. (Note that
these slices display current density and not localization error, as was the case in Fig. 3.)
The task in this case was to localize two simultaneous point sources, one being very
deep. The locations, orientations ("mom"), and strengths of the two simultaneous tests
sources are shown in (A). Estimated current density is gray-color coded [white= zero;
black= maximum]. The LORETA slices in (B), and the WROP slices in (C), show the
estimated current density for each field component ([X-comp], [Y-comp], [Z-comp]) and
for field strength ([Strength]).

The  higher  strength  value  assigned  to  the  deep  test  source  in  Fig.  4A  was  chosen  to
approximately  achieve  equal  powers  of  the  scalp  EEG  measurements  of  both  sources.
LORETA fails to detect the deep source as a distinct estimated current density maximum, if
it is assigned unit strength. The reason is that the deeper the actual source, the more blurred
is the estimated current density with LORETA. In other words, deep sources are, in the worst
of cases, under-estimated with LORETA. In contrast, all other methods (MN, WMN, WROP,
and Backus and Gilbert) produce meaningless and unacceptable estimators for deep sources,
even if they are infinitely strong.

The  results  and  tests  presented  here  demonstrate  that  LORETA in  3D  space  has  good
localization properties, similar to the minimum norm solution applied to a 2D solution space.
However,  it  is  obvious  that  localization  capability  must  deteriorate  when  extending  the
solution  space  from  2D  to  3D,  while  utilizing  the  same  amount  of  information  (EEG
measurements). It must be admitted that the test for evaluating localization errors does not
prove  that  LORETA  will  localize  any  arbitrary  source  distribution.  However,  low
localization error, in the sense defined here, constitutes a minimum necessary condition to be



satisfied  by  any  tomography.  In  other  words:  an  inverse  solution  is  worthless  as  a
tomography if it does not comply with this minimum necessary condition.

2. LORETA in the human Talairach brain: EEG meets MRI
In this implementation, LORETA made use of the three-shell spherical head model registered
to the Talairach human brain atlas [13], available as a digitized MRI from the Brain Imaging
Centre,  Montreal  Neurologic  Institute.  Registration  between spherical  and  realistic  head
geometry used EEG electrode coordinates reported by Towle et al. [14]. The solution space
was restricted to cortical gray matter and hippocampus, as determined by the corresponding
digitized  Probability  Atlas  also  available  from  the  Brain  Imaging  Centre,  Montreal
Neurologic  Institute.  A  voxel  was  labeled  as  gray  matter  if  it  met  the  following  three
conditions: its probablity of being gray matter was higher than that of being white matter, its
probablity of being gray matter was higher than that of being cerebrospinal fluid, and its
probability of being gray matter was higher than 33%. Only gray matter voxels that belonged
to cortical and hippocampal regions were used for the analysis. A total of 2394 voxels at
7mm spatial resolution were produced under these neuroanatomical constraints. A software
package (executables and data) implementing LORETA in Talairach space is available upon
request from the author.

Figure 5 illustrates LORETA images of neuronal electric activity in Talairach space. The
recording, corresponding to a visual event related potential during word stimulation (data
included  in  the  software  package),  was  kindly  provided  by  Koenig  and  Lehmann  [7].
LORETA was computed at the P100 peak. 21 electrodes (10/20 system) were used.

Figure  5.  images  of  neuronal  electric  activity  computed  with  LORETA.  The  images
display the neuronal generators of the P100 visual evoked potential peak during word
stimulation. Activity is gray-scale coded (right side inset), with white for zero and black
for  maximum.  Three  orthogonal  brain  views  in  Talairach  space  are  shown,  sliced
through the  region  of  the  maximum activity.  Structural  anatomy  is  shown  in  black
outline. Left slice: axial, seen from above, nose up; center slice: saggital, seen from the
left; right slice: coronal, seen from the rear. Talairach coordinates: X from left (L) to
right (R); Y from posterior (P) to anterior (A); Z from inferior to superior. The location
of  maximum  activity  is  given  as  (X,Y,Z)  coordinates  in  Talairach  space,  and  is
graphically  indicated  by  black  triangles  on  the  coordinate  axes.  The  most  active
neuronal generators are distributed  in Brodmann areas 17 and 18  (cuneus).  Slightly
weaker  secondary  sources  are  located  with  bilateral  symmetry  at

,  in  associative  cortices,  Brodmann areas  37  and 39
(middle temporal and middle occipital gyri). Original images are in color.

Ideally,  LORETA computations  should  use the exact  head  model  determined from each
individual subject's MRI. The final step in any analysis procedure would be to cross-register
the individual's anatomical and functional image to the standard Talairach atlas. The main
flaw of  the procedure presented  in  this paper  is  the use of an approximate head  model.
However, it has been shown [4] that with as little as 16 electrodes, and using the approximate
three-shell head model, human in vivo  localization accuracy of  EEG is 10 mm at worst.



Consequently,  it  can  be  safely  assumed  that,  given  the  7  mm  resolution  of  the  current
implementation of LORETA-TALAIRACH, localization accuracy is at worst in the order of
14 mm.

An example demonstrating the statistical analysis of LORETA-TALAIRACH images for the
comparison of the activity patterns between schizophrenic and control subjects can be found
in Pascual-Marqui et al [10].
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