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Abstract.  In  this  paper,  we  describe  a  new  direction  in  the  advancement  of  dense-array  EEG
technology. It is generally accepted that three-dimensional spatial analysis of EEG via electric head
models  requires  accurate  representation  of  both  head  geometry  and  head  tissue  conductivity.
Anatomical information can be obtained from structural MRI. At present, however, most researchers
still  take  conductivity  parameters  from  standard  references,  despite  the  large  variability  in  the
available  data.  We  have  therefore  developed  a  method  for  estimating  regional  head  tissue
conductivities in vivo, by injecting small (1–10 mA) currents into the head, and measuring the electric
potential at the remaining electrodes of a dense-array EEG net. Despite the obvious fact that most
current is shunted through the scalp, our results demonstrate that regional head tissue conductivities
can be estimated to within a few percent error.

1. Introduction
The  development  of  high-resolution  electroencephalography  (EEG)  involves
advancements  in  both  device  technology  and  analysis  methods  and  software.
Regarding devices, the efforts of our group are focused mainly on the development of
the Geodesic Sensor Net and the Net Amps amplifier system. The Geodesic Sensor
Net (GSN) is a dense sensor array of 128 or 256 electrodes with approximately equal
spacing between adjacent pairs [16]. Figure 1 shows that, in addition to providing
high spatial resolution, the design of this net solves a number of practical problems.
It  is  quick  and  easy  to  apply,  does  not  require  skin  abrasion,  and  can  be  worn
comfortably for hours. In addition to ease of use in research settings, recent studies at
the Sacred Heart  Medical  Center  in  Eugene,  Oregon,  show that  the GSN is  also
practical and reliable for clinical use [8].



Figure 1. Application of the 128-channel Geodesic Sensor Net.

The voltage signals are amplified by the Net Amps, which are designed specifically for use
with the GSN. While high-resolution EEG promises to enable researchers and clinicians to
study patterns of brain activity not detectable with conventional electrode arrays [14], several
technological challenges remain to make maximal use of this rich data.

Primary among these challenges is the fact that accurate three-dimensional spatial analysis of
EEG data via electric head models requires accurate representation of both head geometry
and regional head  tissue conductivity  [1,11,12,15].  Although early head models assumed
spherical head geometry, modern boundary element [10] and finite element methods allow
the incorporation of realistic head geometry. Modulo the technical challenges of automated
tissue segmentation, structural MRI can provide the necessary anatomical information for
accurate head models. In both spherical and realistic models, the head is usually represented
electrically as four homogeneous and isotropic conductive regions. Table 1 shows the ranges
of these regional tissue conductivities, tabulated from the experimental literature [2,5,7].

Table 1. Head tissue conductivity (1 /Wm)
tabulated from the experimental literature.

Tissue Mean s Stdev s Min s Max s
Brain 0.25 0.13 0.05 1.0
CSF 1.79 0.02 1.73 1.85
Skull 0.018 0.014 0.002 0.1
Scalp 0.44 0.2 0.05 1.0

With the possible exception of the cerebrospinal fluid (CSF), the variability in these data are
greater than the precision thought to be required for accurate  EEG analysis [1,11,12,15].
Nevertheless, most researchers continue to take conductivity parameters from these standard
references, presumably because there is no better method currently available.

We  have  therefore  developed  a  method  of  in  vivo  regional  head  tissue  conductivity
estimation, which can easily be applied to individual subjects [4]. In this method, suggested
previously by Eriksen [3], a dense-array EEG net is placed on the head surface, and small
(1–10 mA) sinusoidal currents are injected into the head volume through selected pairs of
electrodes. By measuring the scalp potential at each of the remaining electrodes, regional
head tissue conductivities can be determined by inverse methods. The obvious concern with
this approach is that, since the low skull conductivity causes most of the injected current to
be  shunted  through  the  scalp,  the  sensitivity  of  the  scalp  potentials  to  the  inner  tissue
conductivities (brain and CSF) is necessarily limited. Despite this physical limitation, we
present here an inverse procedure that can retrieve all four regional head tissue conductivities
to within a few percent error.



2. Methods

2.1 Data acquisition

The proposed method of conductivity estimation is designed to be closely integrated with
dense-array EEG data acquisition. Electric current can easily be delivered through any pair of
electrodes in the GSN. The Net Amps system is already capable of injecting small currents
into the scalp, and such a method is already being used at the beginning of data acquisition to
estimate scalp-electrode impedance. By injecting sinusoidal current and averaging over many
cycles,  the background EEG can be reduced to  negligible  error.  We discuss  other  noise
sources below.

2.2 Forward problem

To address the main problem posed by the low skull conductivity, we focused here on the
development of effective inverse methods within a spherical head model. Assuming that the
frequency of the injected current is low (f d 1 kHz), the potentials at each time point can be
computed as if  the current were constant in time. Standard methods show that  the scalp
potential is given by

where θA (θ B) is the angle between the measurement electrode and the positive (negative)
injection electrode [4,13]. The constants Al depend nonlinearly on the four head radii and the
four conductivities σ, and linearly on the magnitude of the injected current I. Taking I = 1 µA
results in potentials ranging between ± 50 µV over the scalp surface, depending on the angle
between  the  injection  electrodes.  On  a  300  MHz  Macintosh  G3,  our  numerical
implementation of the forward solution required approximately 1.8 seconds to compute the
potentials for a 128-channel net. This code was written with more emphasis on precision than
on speed, however, and we expect that considerable speed increases can be attained with
reasonable effort.

2.3 Inverse problem

Due to the algebraic complexity of the coefficients Al , it is not possible to solve explicitly
for the conductivities σs in terms of the scalp potentials. Instead, inverse methods must be
applied. To guide the inverse solution, we defined an error function

where N is the number of scalp electrodes, Fi and Vi are the computed and measured scalp
potentials, and A and B refer to the positive and negative injection electrodes, respectively.
For  a  given  data  set  Vi,  the best-fit  conductivities  are  those for  which  EAB  is  globally
minimum. While it is not possible to visualize EAB in the full four-dimensional parameter
space,  it  is  still  useful  to  visualize  it  as  a  function  of  each  of  the  four  conductivities
individually. The different lines in Figure 2 represent electrode separation angles of 32 (dot-
dashed), 90 (dashed) and 180 (solid) degrees.



Figure 2. Root-mean-squared error in scalp potentials (µV) as a function of each head
tissue conductivity in a four-sphere model of the human head, assuming 1 µA injected
current.

In each dimension, the error function shows a distinct global minimum. Assuming that this
simple structure persists in the four-dimensional space, the goal of the inverse procedure is to
find  this  global  minimum,  even  in  the  presence  of  inevitable  measurement  noise.  In
preliminary  studies,  we  found  that  retrieval  accuracy  was  improved  by  using  multiple
injection pairs and averaging the corresponding error functions.

where the average is computed over a specified set of injection pairs. This improvement is
presumably  due  to  the  fact  that  different  electrode  separation  angles  generate  different
current densities in the head volume, and thereby probe the tissues differently. An additional
improvement  undoubtedly  results  simply  from  averaging  over  different  instances  of
measurement noise, although this effect alone is not sufficient to explain the improvement. In
the results described below, we averaged over four injection pairs with electrode separations
equal to 48, 94, 130, and 171 degrees.

2.4 Noise

To minimize the error function E  as a function of the four conductivities s,  we used  the
downhill  simplex algorithm of  Nelder  and Mead [9].  For  each run of  the algorithm, the



simplex was initialized randomly by picking four  points normally  distributed about their
mean values, according to the parameters listed in Table 1. To demonstrate  conductivity
retrieval  in  computer  simulation,  we  first  generated  mock  scalp  data  using  the  mean
conductivities listed in Table 1. To make the demonstration more realistic, we added noise to
the mock data

where ni is a zero-mean Gaussian random variable with standard deviation dV, assumed to be
uncorrelated across electrodes. By averaging over many cycles of the injected current, the
background EEG contributes negligible error. The Net Amps, however, can be expected to
contribute  noise on the order  of  dV=0.1mV. Errors due to the misrepresentation  of  head
geometry and electrode placement will be spatially correlated, and are deferred for future
study. In studying retrieval accuracy, therefore, we considered noise levels up to dV = 0.5mV.
Note that increasing the injected current improves the signal-to-noise ratio in the first two
cases only.

3. Results

3.1 Retrieval accuracy

Figure  3  shows  the  distribution  of  retrieved  conductivities  for  50  runs  of  the  simplex
algorithm, assuming the noise level δV = 0.1 µV. Due to the random starting simplex and
random noise, each run of the simplex algorithm yields a slightly different result.



Figure  3.  Distribution  of  retrieved  head tissue  conductivities  in  a  four-sphere  head
model, assuming the injected current I = 1 µA and the noise level δV = 0.1 µV.

Figure 3 shows that, for each tissue, the distribution of results is sharply peaked about the
correct result, and the widths of the distributions are on the order of less than one percent.
More precisely, the corresponding retrieval errors for the four tissues are 0.01 ± 0.6% (brain),
– 0.13 ± 1.4% (CSF), 0.03 ± 0.43% (skull), and 0.02 ± 0.26% (scalp). This suggests that,
despite  the low skull  conductivity,  it  is  entirely feasible  to measure the average regional
conductivity of the brain, CSF, skull and scalp using scalp current injection.

3.2 Multi-start interpretation

The distributions in Figure 3 can be interpreted in two ways. If the simplex algorithm were
run only once, then these distributions would show the range of retrieval errors. On the other
hand, if the results of the 50 runs are taken together, then the means of the distributions yield
much more accurate estimates. Using the result of many runs in this way can be viewed as a
multi-start method, not unlike that used in dipole source localization [6]. For example, if the
means in Figure 3 are taken to provide the true estimate, then this method produces estimates
of regional conductivities with errors on the order of 0.1% for the CSF, and on the order of
0.01% for the remaining tissues.

3.3 Dependence on noise level

As the noise level increases, the retrieval accuracy degrades, as expected. Even when the



noise level is dV=0.5mV, however, this multi-start method produces a distribution of results
for which the error  of the mean is still on the order of  only 0.5% for each tissue. Such
graceful  degradation  with  noise  is  a  highly  sought-after  feature of  computer  algorithms
intended for real-world use.

4. Discussion

We have developed a method of in vivo head tissue conductivity estimation using
scalp current  injection. Together with anatomical data from structural  MRI,  these
results can be used to build more accurate head models, which could substantially
improve dense-array EEG data analysis. The fact that the method uses the same EEG
acquisition system makes it both convenient and cost effective. In practice, current
injections could be made when the GSN is placed on the subject’s head, and the
inverse  solution  for  regional  head  tissue  conductivities  could  be  computed  later
during off-line data analysis.

In retrospect, it is easy to understand why this method works. First, since the current
source  is  known,  this  inverse  problem does  not  suffer  from  the  issues  of  non-
uniqueness which plague dipole source localization. Hence the error function appears
to have a distinct global minimum in the absence of noise. Second, the addition of
random noise to the data introduces local minima into the error function, making
perfect  retrieval  difficult  or  impossible.  Practically  speaking,  however,  retrieval
accuracy  depends  upon  how  severely  these  local  minima  distort  the  shape,  and
especially  the  location  of  the  center,  of  the  global  basin  of  attraction.  For  the
parameter ranges and noise levels relevant to this problem, the general shape of the
error function is apparently preserved. This allows a clustering of solutions in the
vicinity of the correct answer and, by computing their mean, a very accurate estimate
is  obtained.  As  a  bonus,  the  distribution  of  results  generated  in  this  multi-start
approach provides confidence intervals, which would not be available from a single
search attempt.

Current  research efforts  are  aimed  at  using  global  search  algorithms to  find  the
optimal solution in less iterations, developing boundary element and finite element
methods to incorporate realistic head geometry,  and generalizing this approach to
detect local changes in tissue impedance which might signify pathological states of
brain tissue.
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